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Abstract

Fluctuations in the cosmic microwave background (CMB), the radiation left over from the Big

Bang, contain information which has been pivotal in establishing the current cosmological model.

CMB data can also be used to test theoretically well-motivated additions to the model, including

pre-inflationary relics (signatures of bubble collisions arising in eternal inflation) and topological

defects that form after inflation (cosmic strings and textures). These relics typically leave sub-

dominant, spatially localised signals, hidden in the “noise” of the primary CMB, the instrumental

noise, foreground residuals and other systematics.

Standard approaches for searching for such signals involve focusing on statistical anomalies,

which carry the danger of extreme a posteriori biases. The self-consistent approach to this

problem is Bayesian model comparison; however, the full implementation of this approach is

computationally intractable with current CMB datasets, and will only become more difficult

with data from the next generation of CMB experiments. I will describe a powerful modular

algorithm, capable of coping with the volume of data, which combines a candidate-detection

stage (using wavelets or optimal filters) with a full Bayesian parameter-estimation and model-

selection stage performed in pixel space within the candidate regions. The algorithm is designed

to fully account for the “look-elsewhere” effect, and its use of blind analysis techniques further

enhances its robustness to unknown systematics. Finally, I will present the results of applying

the algorithm to hunt for the signatures of bubble collisions and cosmic textures in the seven-year

data from the Wilkinson Microwave Anisotropy Probe.
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Chapter 1

Introduction

1.1 The Universe

Cosmology – the study of the large-scale structure and evolution of the Universe – is a topic

that has fascinated mankind for millennia. Initially bounded only by imagination, through

confrontation with carefully taken data cosmologists have transformed philosophy into science.

In the last twenty years, the quality of cosmological datasets has improved dramatically, painting

a firm but broad-brush picture of the last 14 billion or so years of the Universe’s history. There

is, however, a lot to learn about almost every single brush-stroke. With the quality of modern

datasets we can map out the Universe’s history in unprecedented detail.

1.1.1 Composition

The modern concordance cosmological model, ΛCDM, describes a homogeneous and isotropic

universe that is spatially flat. The contents of the Universe are listed below.

1. Baryonic matter (often simply “baryons”): matter comprising mostly baryons by mass.

Baryonic matter includes all nuclei and electrons (even though electrons are leptons), and

is predominantly primordial hydrogen formed early in the Universe’s history.

2. Currently small, but historically extremely important, relic components of electromagnetic

radiation (discussed in detail in Section 1.2) and neutrinos, known as the cosmic microwave

and neutrino backgrounds (CMB and CνB, respectively).

3. Cold dark matter (CDM): pressureless, non-relativistic and non-baryonic matter that does

not interact via the electromagnetic force. Though not yet observed directly, its existence
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is required to explain a host of phenomena on Galactic (e.g. Oort (1932); Rubin and Ford

(1970)) to cosmological (e.g. Zwicky (1933); Davis et al. (1982)) scales. The strongest

evidence for the non-baryonic nature of dark matter comes from measurements of the

CMB, which reveal that the amount of matter required to form the structures observed

today is far greater than the amount of baryons known to exist (Komatsu et al., 2011).

A full discussion of the effects of dark matter on the CMB is provided in Sec. 1.2.3. The

precise nature of dark matter is the subject of intense ongoing investigation (see e.g. Angle

et al. (2008); Bernabei et al. (2008); Aalseth et al. (2011)).

4. A dark energy component (Λ), currently indistinguishable from a cosmological constant,

responsible for the recent acceleration of the Universe’s expansion (Riess et al., 1998;

Perlmutter et al., 1999). If dark energy is indeed a cosmological constant, its value is lower

than expected by some 120 orders of magnitude, a discrepancy which could indicate that

the observed Universe is but one of many (Weinberg, 1989).

The dark energy is currently the dominant component, making up ∼ 73% of the Universe’s

energy density. Dark matter accounts for a further ∼ 23%, with normal baryonic matter

making up only ∼ 5% (Komatsu et al., 2011). While the model explains the abundance of light

elements (Coc et al., 2004), CMB (Komatsu et al., 2011), galaxy power spectra (Reid et al., 2010),

supernovae redshift-distance relationship (Suzuki et al., 2012) and more,1 it presents almost as

many questions as it answers, not least the provenance of the two dominant components for

which it is named. Although the currently accepted composition is fairly well-defined, there

are strong indications from both theory (e.g. Kibble (1976)) and experiment (e.g. Fukuda et al.

(1998)) that further additions should be made. This thesis is primarily concerned with additions

to the ΛCDM model.

1.1.2 Expansion

The Universe is expanding, an observation first made when Hubble noted a linear relationship

between the distance and recessional velocity of “extra-galactic nebulae”, i.e. local galaxies (Hub-

ble, 1929). Assuming the cosmological principle – that the Universe has no preferred position

or direction and is therefore homogeneous and isotropic – the Universe is described by the

Friedmann-Robertson-Walker (FRW) metric (Friedman, 1922)

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.1)

1Neither the list of physical phenomena nor references provided here are exhaustive, but are rather meant to
provide illustrative recent examples of the experimental success of the model.
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where {r, θ, φ} are spherical polar coordinates, a(t) is a time-dependent scale factor, k is a

measure of the curvature of the space-time and I have used natural units (c = 1).

Assuming General Relativity is the correct theory of gravity, the evolution of the scale factor

in a universe containing a perfect fluid with pressure p and density ρ is governed by the Friedmann

equations

(
ȧ

a

)2

=
8πGρ

3
− k

a2
+

Λ

3
(1.2)

ä

a
= −4πG

3
(3p+ ρ) +

Λ

3
, (1.3)

where G is Newton’s constant, Λ is the cosmological constant, and dots denote derivatives with

respect to time. Solving the Friedmann equations requires an equation of state for the perfect

fluid (or, equivalently, a relationship between the energy density and the scale factor). For

cold dark matter, which is pressureless, this is simply pmat = 0; photons and other relativistic

particles obey prad = 1
3ρrad. These imply, and are implied by, the fact that the densities of cold

dark matter and photons scale as ρmat ∝ a−3 and ρrad ∝ a−4, respectively.

The critical density, ρcrit, is the total energy density of a flat universe, where k = 0. Defining

the energy density in the cosmological constant as

ρΛ =
Λ

8πG
(1.4)

allows the absorption of the cosmological constant term in Equation 1.2 into the energy density.

The critical density is then

ρcrit =
3H2

8πG
, (1.5)

where H = ȧ
a is the Hubble parameter.

The Hubble parameter is a measure of the Universe’s expansion rate, and defines typical

length- and time-scales for the Universe at a given epoch. Recalling that c = 1, the comoving2

Hubble radius is given by (aH)−1, and is the comoving distance at which the recession velocity

is the speed of light. The Hubble radius can be thought of as defining the maximum distance

separating particles in causal contact at a given epoch. Another important length scale is the

comoving particle horizon

η =

∫ t

0

dt′

a(t′)
, (1.6)

the maximum comoving distance traveled by a photon since the beginning of the Universe. This

2A comoving distance is a physical proper distance divided by the scale factor to remove the expansion of the
Universe. The comoving distance between two objects moving only due to the Universe’s expansion – i.e. with
zero peculiar velocity – is therefore constant.
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is the maximum distance separating particles that have ever been in causal contact. In universes

containing only radiation and matter, the Hubble and horizon scales are approximately equal

(indeed, exactly equal for a universe containing only radiation); this is not the case for universes

containing only dark energy. An excellent discussion of these, and other, distance scales can be

found in Davis and Lineweaver (2004).

1.1.3 History

The history of a ΛCDM universe begins with the universe in an extremely hot and dense state.

The Universe is initially dominated by a scalar field known as the inflaton, an exotic form of

matter which exerts negative pressure. Driven by the inflaton, the Universe undergoes a period of

exponential expansion known as inflation (Guth, 1981) (discussed in more detail in Section 1.4),

increasing the scale factor by at least e60 and leaving the currently-observable portion of the

Universe flat, homogeneous and isotropic.

At the end of inflation, the inflaton is assumed to have decayed into the particles of the

Standard Model in a process known as reheating (see Allahverdi et al. (2010) for a review).

Quantum fluctuations in the inflaton are transferred to the decay products as a distinctive

spectrum of perturbations on a smooth background. The electromagnetic radiation produced by

reheating dominates the energy budget of the Universe at this stage, decelerating the expansion

such that the scale factor grows only as a ∝ t1/2, and allowing only logarithmic growth of

sub-horizon matter perturbations. The Universe is filled with a plasma of photons and exotic

particles, which gradually become less exotic as they cool and combine into nucleons. Between

around two and twenty minutes after the onset of inflation, when the temperature of the plasma

drops below ∼ 109K, the protons and neutrons combine to produce deuterium, helium and

lithium nuclei in characteristic ratios.

As the energy density of radiation decreases faster than that of matter, the radiation becomes

steadily less influential and the dark matter comes to dominate the the Universe. The expansion

continues to slow, albeit at a reduced deceleration (a ∝ t2/3), but critically matter perturbations

now grow linearly with the scale factor. Once the temperature reaches ∼ 3000 K, some 380,000

years after inflation, it becomes energetically favourable for free electrons to combine with protons

in an event known as recombination, and the Universe rapidly becomes neutral. At this point the

mean-free path of the photons grows larger than the Hubble scale, and the photons free-stream,

forming the CMB: our earliest picture of the Universe. A more in-depth description of the CMB

is provided in Section 1.2.

The epoch of matter domination sees the formation of recognisable structures, from the first

28



stars or quasars responsible for reionisation of the intergalactic medium – the precise identity

of the sources responsible being a particularly active field of current research – to galaxies and

the filamentary structures of galaxy clusters and voids identified in large-scale surveys. After

approximately 10 billion years, the dark energy overtakes matter as the dominant component in

the Universe, and the Universe’s expansion starts to accelerate. We find ourselves observing the

Universe around 14 billion years after inflation, at a particularly unique – and, indeed, poignant

– epoch, at the point where the complexity created by the collapse of ever-larger structures starts

to unravel.

1.2 The Cosmic Microwave Background

1.2.1 Discovery and characterisation

As discussed in Section 1.1.3, the cosmic microwave background (CMB) is the radiation released

after free electrons and protons combined when the Universe cooled below ∼ 3000 K. Now

gravitationally redshifted into the microwave regime, it was first measured by Penzias and Wilson

(1965) and identified by Dicke et al. (1965). The COBE satellite measured the spectrum of the

CMB to be a near-perfect black-body at 2.725 K (Mather et al., 1994), implying that the entire

CMB was once in thermal equilibrium (more on this later), and discovered fluctuations in its

temperature of order 1 in 100,000 (Smoot et al., 1992). These anisotropies are (primarily)

primordial, and therefore offer an early glimpse of the perturbations that went on to form

structures we see today. The characteristics of the anisotropies depend intricately on the contents

of the Universe and the source of the primordial perturbations, and yield an extraordinary

amount of cosmological information. The anisotropies have accordingly been studied in great

detail by experiments such as Saskatoon (Netterfield et al., 1997), BOOMERanG (de Bernardis

et al., 2000) and MAXIMA (Hanany et al., 2000), and latterly WMAP (Larson et al., 2011),

ACT (Das et al., 2011), SPT (Keisler et al., 2011) and Planck (Planck Collaboration et al.,

2011).3 Their power spectrum, plotted in Figure 1.1, forms the cornerstone of the ΛCDM

model, and, indeed, the modern view of cosmology as a precision science; a discussion of its

major features is presented in the following section.

3Among many others! See http://lambda.gsfc.nasa.gov/links/experimental_sites.cfm for a complete
listing.

29



Figure 1.1: The CMB power spectrum as measured by seven years of WMAP observations. The
best-fit ΛCDM power spectrum is plotted as a red line, and cosmic variance – the sample variance
inherent in estimating the power spectrum from a limited number of modes – is indicated by the
shaded region. Original (annotation-free) plot credit: Larson et al. (2011).

1.2.2 Anisotropies

Inflation (of which much more will be said in Section 1.4) creates a universe containing a nearly

scale-invariant set of adiabatic perturbations of radiation, baryons and dark matter.4 At early

times, the photons are so energetic that the baryons are entirely ionised, and the photons and

baryons are tightly coupled by Compton and Thomson scattering processes. The dark matter

and radiation interact more indirectly, via the gravitational potentials set up by the primordial

density fluctuations, which are dominated at early times by the radiation, and at later times by

the dark matter. The evolution of the perturbations in each of the Universe’s components are

therefore coupled until the temperature is low enough for hydrogen atoms to form and the CMB

is released.

The evolution of the perturbations depends greatly on scale. The largest scales measured

in the CMB power spectrum were super-horizon until just before the CMB decoupled, and

therefore have had very little time in causal contact to evolve. These modes are therefore largely

unchanged from the primordial fluctuations, although late-time effects from dark energy also

affect this region of the power spectrum (Rees and Sciama, 1968).

Smaller scale modes, on the other hand, are sub-horizon for long enough to evolve through

causal processes. The evolution is governed by two competing effects: the radiation pressure

4Scale-invariance here means that the full three-dimensional power spectrum of the perturbations is given by
P (k) ∝ kns , where k is the wavenumber and ns = 1 for exact scale-invariance. Adiabaticity means that all
species were created with the same number density at reheating.
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of the photons tending to equilibrate variations in the density field, and gravity causing the

dark matter and baryons to cluster in potential wells. The two competing forces set up acoustic

oscillations in the photon-baryon plasma, which in turn produce features in the power spectrum.

Modes that have completed a half-integer number of oscillations at recombination are maxi-

mally rarefied or compressed when the CMB photons decouple. Structure on these scales – the

harmonics of the horizon size at recombination – is therefore enhanced relative to intermediate

scales, creating acoustic peaks in the power spectrum (see Figure 1.1). The finite speed of sound

in the photon-baryon plasma means that the photons and baryons are not perfectly coupled,

and the photons are therefore able to travel a small distance between collisions. This serves to

smooth out structures smaller than a characteristic diffusion length-scale (Silk, 1968), and as a

result the smallest-scale modes in the CMB power spectrum are heavily damped.

1.2.3 Applications

The intricate dependence on the CMB anisotropies on the contents of the Universe makes the

CMB an ideal dataset for characterising the cosmological model. The primary application of

CMB data is therefore the use of the power spectrum to constrain models of the Universe.

The features of the power spectrum constraining particular facets of the cosmological model are

indicated in Figure 1.1. The overall dependence of the power spectrum on scale indicates the

shape of the primordial power spectrum, and strongly favours the nearly scale-invariant spectrum

produced by inflation. The positions of the acoustic oscillations constrain a combination of the

curvature and the amount of dark energy, which, when combined with an independent measure

of the Hubble constant, indicates that the Universe is flat. A measurement of the first two

acoustic peaks allows the baryonic fraction of the Universe to be determined, as an increased

baryon fraction causes the photon-baryon plasma to compress further than it rarefies, weighting

odd peaks over even. Observations of smaller-scale peaks allow the dark matter fraction to be

constrained: modes which begin to oscillate when the Universe is still radiation-dominated, and

which are therefore small, do so in decaying potentials, driving up their amplitudes. Finally,

measurements of the smallest scales – the so-called damping tail – constrain the amount of

relativistic matter (in particular, the neutrino fraction) present at recombination.

As the physics of the primary CMB anisotropies is so well-understood, the CMB is also

an excellent dataset in which to search for small deviations from Gaussianity imparted both

primordially and in the intervening ∼ 14 billion years. These effects include the primordial non-

Gaussianities inherent in all but the simplest models of inflation, the Integrated Sachs-Wolfe

effect due to late-time dark energy domination, gravitational lensing of the CMB by clumps of
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dark matter, and, potentially, signatures of as-yet undiscovered physical processes occurring at

very early times (as discussed in Sections 1.4.3 and 1.5). As these effects induce non-Gaussian

features into the CMB signal, the power spectrum no longer completely characterises the CMB

data. Such studies therefore consider either higher-order correlations of the data, such as the

bispectrum or trispectrum, or maps of the CMB sky, either in isolation or in cross-correlation

with other datasets. Map-based approaches are the main focus of the thesis, and will be discussed

in great detail in Chapters 2-5.

1.3 Matter Perturbations

As the CMB power spectrum describes the perturbations to the primordial photons, so the

matter power spectrum describes the perturbations to the cold dark matter and baryons which

evolve into galaxies, clusters and filamentary large-scale structure. The form of the matter power

spectrum is derived from linear perturbation theory, and shows that the behaviour of matter

perturbations is heavily scale-dependent. The theoretical ΛCDM matter power spectrum is

plotted in Figure 1.2 as a function of wavenumber k, and its form is described below.

Let us first consider super-horizon modes: that is, matter perturbations with wavelengths

larger than the horizon at a given epoch. These modes can not evolve through causal processes.

Linear perturbation theory tells us that their amplitudes grow linearly with conformal time5

during the radiation- and matter-dominated epochs, but remain constant once dark energy begins

to dominate. This picture changes, however, when the modes become smaller than (or “enter”)

the horizon. The smallest-scale modes, which enter the horizon before matter-radiation equality,

evolve in a Universe dominated by radiation. As discussed in previous sections, radiation pressure

causes the photon plasma to oscillate, the associated potential wells to decay, and therefore the

growth of matter perturbations to slow to logarithmic with conformal time. Modes which enter

the horizon after matter-radiation equality6, however, behave very differently: as the pressureless

cold dark matter is now dominant, there is no pressure support, and the perturbations are free to

grow linearly with conformal time. This means that the power in modes which enter the horizon

before matter-radiation equality is suppressed (by a factor of ∼ k−4) relative to those which

enter the horizon afterwards. When this is evolution is superimposed upon a scale-invariant

(i.e. P (k) ∝ k) initial power spectrum, a characteristic turnover is seen at the wavenumber

corresponding to the horizon scale at matter-radiation equality.

5Conformal time is defined to be η =
∫ t
0

dt′

a(t′) , i.e. exactly the same as the particle horizon: the maximum

distance traveled by a photon corresponds to a particularly useful time variable.
6But before dark energy begins to dominate: the rapid expansion associated with dark energy domination

stops the growth of matter perturbations on all scales.
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Figure 1.2: The best-fit theoretical ΛCDM matter power spectrum (red line), and measurements
of it from a variety of sources, including galaxy redshifts from the Sloan Digital Sky Survey
(SDSS) (Tegmark et al., 2004). This plot is reproduced from Tegmark et al. (2004), which
contains a full description of the other datasets featured.

Though it is, of course, impossible to probe dark matter using electromagnetic radiation,

by assuming that galaxies are biased tracers of the underlying dark matter distribution one can

derive the full matter power spectrum using galaxy surveys. The results of such a survey, namely

the Sloan Digital Sky Survey (SDSS), are superimposed upon the theoretical power spectrum

shown in Figure 1.2. Such observations are critical to our understanding of the Universe. The

matter power spectrum is an extremely rich source of cosmological information, and can be used

to constrain the Universe’s composition, initial conditions (i.e. the primordial power spectrum),

and the nature of its more-exotic constituents (dark matter, dark energy and neutrinos, for

example) through their effects on the growth of structure.
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1.4 Inflation

1.4.1 Motivation

The phase of inflation invoked in the early Universe is motivated by a number of “fine-tuning”

problems with the observed CMB, namely the horizon, flatness, and multipole problems. From

the very first observations of the CMB (Penzias and Wilson, 1965; Dicke et al., 1965), it was

clear that the CMB is uniform in temperature across the sky, implying that the entire observable

Universe was in thermal equilibrium at last scattering. This is at odds with expectations from

simple calculations assuming that the Universe contains only matter and radiation, which show

that the size of the particle horizon – the maximum separation between two points in causal

contact at the start of the Universe – is ∼ 1◦ across on the CMB sky. This is the horizon problem:

any two points in the CMB separated by more than a degree should have O(1) variations in

temperature, but clearly do not.

The source of the second, flatness problem, is the observation that the current Universe is so

close to flat, or equivalently that the density today is so close to the critical density. The critical

density is an unstable point, so if there is any small deviation from the critical density at the

Universe’s inception it grows with time. Looking back, this means that the Universe must have

been even flatter in the past, so much so as to imply fine-tuning. The observed near-flatness of

the Universe also uncovers another problem, the monopole problem, as phase transitions in the

early Universe (of which more will be said in Section 1.5) are expected to have produced relics,

known as monopoles, which over-close the Universe.

1.4.2 Implementation

Alan Guth (Guth, 1981) observed that a phase of exponential expansion has the potential to

fix each of these problems. Guth proposed that the early Universe contained a scalar field, the

inflaton, trapped in a false vacuum, dominated by the associated potential energy. This constant

potential energy density produced an exponential expansion rate, greatly increasing the horizon

size, flattening the Universe and diluting away any relic particles. Provided the scale factor

increased by a factor & e60, the fine-tuning problems were solved. The Universe then stopped

inflating by undergoing a phase transition via bubble nucleation, whereby bubbles of the true

vacuum instantaneously appear within the false vacuum. A simple example of a scalar-field

potential in which this scenario, termed “old inflation”, arises is shown in the left-hand plot of

Figure 1.3.

This original proposal suffers from the so-called “graceful exit” problem, as the Universe
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Figure 1.3: Examples of inflationary potentials. In the left-hand plot, the inflaton, depicted by a
blue ball, is trapped within a false vacuum and must tunnel through a potential energy barrier in
order to reach the true vacuum. In the right-hand plot, the inflaton rolls slowly down a plateau
before oscillating about the potential minimum.

is not able to stop inflating and reheat homogeneously (Guth and Weinberg, 1983). The only

method of thermalizing the Universe is for bubbles to collide, releasing the energy in their walls.

For this to occur homogeneously requires the percolation of many such bubble collisions, and

therefore a high bubble nucleation rate, but inflation then ends too quickly to solve the horizon

and flatness problems. The graceful exit problem can be solved by presuming that the inflaton

is not trapped in a false vacuum, but is instead rolling slowly down a shallow potential towards

a minimum (Linde, 1982; Albrecht and Steinhardt, 1982). An example potential for this so-

called “new inflation” is shown in the right-hand plot of Figure 1.3. The potential energy is still

roughly constant, and so the Universe inflates, stopping only when the kinetic energy becomes

comparable to the potential energy. Once the inflaton reaches the bottom of the potential,

it undergoes oscillations which couple to the particles of the Standard Model, reheating the

Universe.

Part of the lasting appeal of inflation is that, in addition to solving the fine-tuning problems

highlighted above, it also provides a natural method of generating the primordial perturbations

that grow into the structures seen today. As the Universe undergoes such an enormous expansion,

quantum fluctuations in the inflaton field are blown up to super-horizon scales (Mukhanov and

Chibisov, 1981) with a nearly scale-invariant power spectrum. Over 20 years after inflation was

proposed, this prediction was confirmed by the CMB power spectrum obtained by the WMAP

satellite (Spergel et al., 2003; Komatsu et al., 2003; Peiris et al., 2003).
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1.4.3 Eternal inflation and the Multiverse

Inflation is an empirically successful theory: it predicts Gaussian, nearly scale-invariant fluctu-

ations, and it can solve the fine-tuning problems, but this success is purely phenomenological.

Theories of higher-energy physics implementing inflation – and, in particular, the form of the

potential sourcing inflation – are needed to make probabilistic statements about its likely du-

ration, and hence decide whether this success is deserved. If inflation embedded in a physical

framework is found to be extremely unlikely, then instead of solving the fine-tuning problems

discussed earlier, it simply moves them to an earlier epoch in the Universe’s history.

String theory is arguably the leading candidate for quantum gravity: a “theory of every-

thing”, describing the Universe on the smallest and largest scales, and in both the weak and

strong gravitational limits. String theory predicts that spacetime consists of at least 10 dimen-

sions, of which all but four are compactified. There are an extremely large number – at least

10500 – of ways of doing so, each corresponding to a different false vacuum in a vast landscape

potential (Susskind, 2003). In string theory, we therefore expect inflationary potentials resem-

bling those originally proposed by Guth (1981): picture the left-hand side of Figure 1.3 with

∼ 10500 more vacua of greatly differing magnitudes.7

The question therefore arises as to how inflation can occur in the string theory landscape.

If the inflaton simply tunnels from one false vacuum to the next, then we are stuck with the

same problems that thwarted the original, “old” inflation. Progress can be made provided the

requirement for percolation of the bubbles is dropped. If, instead, the inflaton tunnels onto

a region of the potential where it can slowly roll, each tunnelling event produces a bubble in

which slow-roll inflation, reheating, and standard cosmological evolution can then occur.8 In this

picture of “eternal inflation”, the bulk of space inflates forever, stopping only within individual

bubble universes. Each bubble nucleates with a finite radius before expanding at the speed of

light (Coleman and De Luccia, 1980), and to observers within contains an infinite FRW metric,

which is initially open, but can be flat after slow-roll.9 The collection of these bubbles is known

as the Multiverse.

The infinite metric foliating the interior of each bubble means that it is impossible for ob-

servers to see out of their bubble into the Multiverse. However, it is possible for information

7Note that multiple vacua appear generically in high-energy theories, including supersymmetry and super-
gravity. The following reasoning should therefore not be considered as only relating to string theory.

8Guth and Weinberg (1983) originally argued against the Universe residing in a single such bubble, as it could
not contain enough information and reheat to the right temperature. These issues are addressed by the secondary
phase of slow-roll inflation.

9The duration of slow-roll inflation that naturally follows bubble nucleation is the subject of ongoing study.
Calculations based on single bubble nucleations from ad hoc potentials indicate that sufficient slow-roll to satisfy
current bounds on curvature occurs in 90% of cases in which structures form on Galactic scales (Freivogel et al.,
2006). Equivalent results for colliding bubbles nucleating from realistic potentials are needed to make robust
statements about this probability.
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about collisions between bubbles to penetrate the bubble interior (Aguirre et al., 2007). To

see this, consider Figure 1.4, which plots the space-time associated with two colliding bubbles.

When the bubbles collide, energy passes into the interior of each bubble in the direction of the

collision. This energy perturbs the interior of the observation bubble, affecting all observers

to the future of the collision. Because of the differences between the metrics describing the

inflating bulk and the bubble interior, observers see the collision as taking place in their past,

before the phase of slow-roll inflation creating their ΛCDM universe. In particular, the observer

indicated by the black dot sees a last-scattering surface that is partly pristine and partly per-

turbed by the collision: its CMB sky would contain a localised, circular, smooth temperature

modulation (Chang et al., 2009). Fascinatingly, it is therefore possible to observationally test

the existence of the Multiverse using CMB data. Chapters 3 and 5 describe searches for bubble

collisions in the WMAP 7-year data, including deeper discussion of the observational signatures

and the probability of detection.

1.5 Topological defects

Topological defects are formed when a medium undergoes a phase transition in which certain

symmetries are broken. Defects form because the medium can configure itself in a number of

different ways after the symmetry is broken. If two regions are separated by large distances there

is no reason to expect they should end up in the same configuration after the phase transition.

The interfaces between such regions – long-lived, localised, high-energy states of the medium –

are known as topological defects. A terrestrial example of a symmetry-breaking phase transition

is the cooling of a ferromagnetic material. Above the Curie temperature, the magnetic field in

such a material is randomly ordered at all positions. Below the Curie temperature, the magnetic

field is aligned locally, in regions known as domains, but not globally. Topological defects, called

“domain walls”, are observed where the domains meet.

Topological defects are of cosmological interest because symmetry-breaking phase transitions

are predicted to take place as the Universe cools (Kibble, 1976), producing, for example, domains

with differing values of the Higgs field. As topological defects are long-lived regions where the

medium is trapped in a high-energy state, and potential energy gravitates in General Relativity,

we should generically expect topological defects to affect the evolution of the Universe. Some

defects, such as monopoles (point defects) and domain walls analogous to those formed in fer-

romagnets, do so catastrophically, being produced in such numbers as to cause the Universe to

collapse before any structure has formed (“over-closing” the Universe (Preskill, 1979)). Oth-

ers, such as cosmic strings and textures (stable linear defects and dynamical, three-dimensional
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Figure 1.4: Space-time diagram of two bubbles colliding. The axes plotted indicate a time and
space coordinate in the eternally inflating bulk; for simplicity, the bubbles are taken to nucleate
at the same time (t = 0). Each bubble nucleates with a finite radius before expanding. The
future lightcone of the nucleation (black dashed line) forms the bubble’s “Big Bang”, where the
scale factor tends to zero; slow-roll inflation takes place shortly after this. After nucleation, the
bubble walls rapidly accelerate to the speed of light, which corresponds to slopes of 45◦ in this
diagram. When the bubble walls collide, a domain wall (in red) forms between the bubbles, and
energy is transferred into the bubble interiors affecting all regions to the future of the collision
(blue dashed line). This perturbs the surfaces on which the inflaton field is constant – the
natural time coordinates describing the bubble interior – which are shown as thin black lines in
the unperturbed region of the bubble, and as green lines in the perturbed region. If the thick
black / green line corresponds to the last-scattering surface, the highlighted observer’s CMB will
contain a disk-like region that has been perturbed by the collision. Original plot credit: Aguirre
and Johnson (2009).

“knots” (Turok, 1989)), are more benign, and can be produced with only perturbative effects

on the rest of the Universe. While inflation dilutes away any defects formed prior to its on-

set (Guth, 1981), any defects formed in post-inflationary phase transitions could have observable

consequences. As the energy scale of inflation is far, far beyond that achievable in the labora-

tory, detection of a defect could hint at processes occurring in regimes otherwise completely

inaccessible to laboratory experiment.

The CMB provides a particularly useful signal in which to detect defects, as it back-lights

all structures between the observer and last-scattering surface. CMB photons interact with de-

fects to leave distinctive deviations from the CMB’s primordial Gaussian random field. Cosmic

strings, for example, produce linear discontinuities in the temperature field, as photons passing

the string on different sides experience a differential redshift (Kaiser and Stebbins, 1984). Tex-

tures are dynamical, collapsing and eventually exploding, and so CMB photons passing through
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textures experience time-varying potentials. Textures therefore leave a distribution of hot and

cold modulations on the CMB sky (Turok and Spergel, 1990). While we can rule out the produc-

tion (after inflation, at least) of monopoles and domain walls by our presence alone, the search

for cosmic textures and strings is very much alive. Chapters 4 and 5 describe searches for tex-

tures in the WMAP 7-year data, including greater detail on the texture production mechanism

and the observational signatures.

1.6 Bayesian model selection

The bubble collisions and topological defects discussed in Sections 1.4 and 1.5 are theoretically

well-motivated additions to the standard cosmological model. The physical signatures are under-

stood (at least to first order), allowing likelihoods to be written down, and the prior probability

distributions of the model parameters are likewise set out. We can therefore use model selection

to make probabilistic statements about the degree to which each model is favoured by the latest

cosmological data and theoretical knowledge.

Model selection problems require the comparison of posterior probability distributions, and

are inherently a question of inference. Cox (1946) showed that Bayesian methods are the only

self-consistent framework for such calculations. Bayes’ theorem (Bayes and Price, 1763) states

that the posterior probability of a model M (selected from a complete set of N models) being

true, given a set of data d, is

Pr(M |d) =
Pr(M) Pr(d|M)

∑N
i=1 Pr(Mi) Pr(d|Mi)

, (1.7)

which allows the comparison between two such models to be written as

Pr(M1|d)

Pr(M2|d)
=

Pr(M1)

Pr(M2)

Pr(d|M1)

Pr(d|M2)
. (1.8)

The prior probabilities of each model, Pr(M), are typically chosen to be equal, indicating no

a priori reason to prefer one model over another. The decision-making power in Bayesian

probability theory therefore lies with the evidence, Pr(d|M), which is calculated by marginalising

the model likelihood over its parameters, m,

Pr(d|M) =

∫
dm Pr(m|M) Pr(d|m,M). (1.9)

Equation 1.9 clearly shows the core concept of Bayesian probability theory: namely the

interplay between the data, in the form of the likelihood, Pr(d|m,M), and existing knowledge,
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in the form of the parameter priors, Pr(m|M). Consequently, Bayesian model selection naturally

incorporates Occam’s Razor. The appearance of the prior in the evidence calculation means that

complex models, using more parameters, are automatically down-weighted by the volume of the

extra parameter space, and so must explain the data much better than a simpler model in order

to produce the same evidence. Likewise, prescriptive models, where the likelihood is non-zero

over a large fraction of the prior volume, will naturally be favoured over models in which a

parameter is poorly constrained by theory, and the likelihood is predominantly zero.

The use of Bayesian model selection in cosmology is growing, and has recently been applied to

test for extensions to ΛCDM such as curvature (Trotta (2007): a particularly pedagogic paper),

and to differentiate between models of inflation (Easther and Peiris, 2012; Mortonson et al., 2011;

Norena et al., 2012). Chapters 3, 4 and 5 describe applications of Bayesian model selection to

determine whether the standard cosmological model should be augmented with bubble collisions

or textures.

1.7 Thesis outline

The Milky Way emits radiation across the electromagnetic spectrum, including the microwave

regime. This dominates the CMB radiation in the direction of the Galactic plane, and such

regions are therefore often masked in CMB studies. Masking by definition removes information

from the data, but it is possible to recover information on the largest scales using reconstruction

techniques. In Chapter 2, I discuss the performance of the most commonly used reconstruction,

highlighting an issue that has recently surfaced in the literature. An improved version of the

reconstruction is proposed, to be applied in later chapters.

Chapters 3 to 5 describe the development of a Bayesian algorithm designed to search for the

signatures of cosmic textures and bubble collisions in the CMB. The core aim of the algorithm

is the calculation of the posterior probability of the average number of signatures present, per

CMB sky, given the WMAP 7-year data. Due to the volume of data available, the full calculation

is computationally infeasible, and so the algorithm uses candidate-detection techniques – such

as spherical needlets (Marinucci et al., 2008; Pietrobon et al., 2008; Scodeller et al., 2011) and

optimal filters (Schäfer et al., 2006; McEwen et al., 2008) – to determine the portions of data

which contribute to the posterior. Only these regions then need be sampled in order to generate

a conservative approximation to the posterior.

The first version of this algorithm, presented in Chapter 3, is restricted (for computational

reasons) to considering patches of data up to 11◦ in radius. The pipeline is applied to search

for bubble collisions, using spherical needlets to detect the regions of interest. In Chapter 4,
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the restriction on patch size is removed by processing patches at reduced resolution if required,

and the resulting algorithm is used to search for cosmic textures. Finally, in Chapter 5, the

candidate-detection stage is optimised by replacing the spherical needlets with optimal filters

based on the signatures of interest. The resulting algorithm is then applied to search for both

texture and collision signatures.

Each chapter consists of a paper written by myself and collaborators. I was critically involved

in every aspect of these papers, contributing to the design of the formalism and pipeline, coding

the algorithm (aside from the optimal filters), performing the data analysis and writing significant

portions of the manuscripts. The content of each paper is reproduced as it appears in print;

formatting changes have been made to match thesis requirements. The titles, co-authors and

publication details of the papers comprising each chapter are listed below.

An additional second-author paper is included as Appendix B, as it contains an in-depth

treatment of the optimal filters applied in Chapter 5. This work was published as Jason D.

McEwen, Stephen M. Feeney, Matthew C. Johnson, Hiranya V. Peiris, 2012, Phys. Rev. D,

volume 85, article 103502. I contributed to the design of the algorithm and the study of its

performance, including the influence of noise and beam approximations.

The thesis contains references to Feeney et al. (2011c), Feeney et al. (2011a), Feeney et al.

(2012) and McEwen et al. (2012), which should be interpreted as references to Chapters 2, 3

and 4 and Appendix B, respectively.

Chapter 2: Avoiding bias in reconstructing the largest observable scales from partial-sky data

This work was published as Stephen M. Feeney, Hiranya V. Peiris and Andrew Pontzen,

2011, Phys. Rev. D, volume 84, article 103002, and was carried out in collaboration with

the named co-authors.

Chapter 3: First observational tests of eternal inflation: analysis methods and WMAP 7-year

results

This work was published as Stephen M. Feeney, Matthew C. Johnson, Daniel J. Mortlock,

and Hiranya V. Peiris, 2011, Phys. Rev. D, volume 84, article 043507, and was carried out

in collaboration with the named co-authors. A summary was also published as Stephen

M. Feeney, Matthew C. Johnson, Daniel J. Mortlock, and Hiranya V. Peiris, 2011, Phys.

Rev. Lett. volume 107, article 071301.

Chapter 4: Robust constraint on cosmic textures from the cosmic microwave background

This work was published as Stephen M. Feeney, Matthew C. Johnson, Daniel J. Mortlock,

and Hiranya V. Peiris, 2012, Phys. Rev. Lett., volume 108, article 241301, and was carried
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out in collaboration with the named co-authors.

Chapter 5: Hierarchical Bayesian detection algorithm for early-universe relics in the cosmic

microwave background

This work was carried out in collaboration with Matthew C. Johnson, Jason D. McEwen,

Daniel J. Mortlock, and Hiranya V. Peiris, and is in the final stages of preparation for

submission to a journal.
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Chapter 2

Avoiding bias in reconstructing

the largest observable scales from

partial-sky data

2.1 Abstract

Obscuration due to Galactic emission complicates the extraction of information from cosmologi-

cal surveys, and requires some combination of the (typically imperfect) modeling and subtraction

of foregrounds, or the removal of part of the sky. This particularly affects the extraction of in-

formation from the largest observable scales. Maximum-likelihood estimators for reconstructing

the full-sky spherical harmonic coefficients from partial-sky maps have recently been shown to be

susceptible to contamination from within the sky cut, arising due to the necessity to band-limit

the data by smoothing prior to reconstruction. Using the WMAP 7-year data, we investigate

modified implementations of such estimators which are robust to the leakage of contaminants

from within masked regions. We provide a measure, based on the expected amplitude of residual

foregrounds, for selecting the most appropriate estimator for the task at hand. We explain why

the related quadratic maximum-likelihood estimator of the angular power spectrum does not

suffer from smoothing-induced bias.

2.2 Introduction

It is unavoidable that we observe the Universe through the galaxy we inhabit. The foreground

contamination injected by the Milky Way into full-sky cosmological data-sets must be modeled
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and removed, or the regions most conspicuously contaminated must be excised. Where no

precise model of the foregrounds is available, cutting the sky is the most robust option, with the

regrettable consequence that part of the signal is discarded along with the contamination. This

includes information on the largest scales, which are valuable for a variety of reasons, including

measurement of the integrated Sachs-Wolfe effect (Sachs and Wolfe, 1967) and constraining

primordial non-Gaussianity using tracers of large-scale structure (Slosar et al., 2008).

It is impossible to uniquely recover the cosmological signal discarded in the sky cut. However,

by writing down the likelihood for the region of the sky in which one trusts the data, it is possible

to reconstruct an estimate of the signal at large scales which maximizes the likelihood of the

residual noise (de Oliveira-Costa and Tegmark, 2006). An alternative reconstruction scheme

maximizes the posterior probability (Wiener, 1964; Bunn et al., 1994; Zaroubi et al., 1995;

Tegmark, 1997a; Bielewicz et al., 2004) of measuring the underlying cosmological signal given

the available data and a prior theoretical expectation on the signal.

The reconstructions estimate the large-scale (low-`) spherical harmonic coefficients, a`m, by

treating the signal at small scales as noise and only considering data external to the sky cut.

If, as with the cosmic microwave background (CMB), the field to be reconstructed is not band-

limited, the proliferation of small-scale signal makes the reconstruction noisy to the point of

being useless. Input maps are therefore smoothed – necessarily prior to cutting the sky – to

truncate the signal and remove sources of confusion below a chosen angular scale (Efstathiou

et al., 2010). However, smoothing leaks contamination from the masked region into the trusted

data (Aurich and Lustig, 2011; Copi et al., 2011), and the reconstructed spherical harmonic

coefficients, â`m, are biased. In this work we explore the causes and expected magnitudes of this

bias, and discuss how it can be mitigated.

2.3 Maximum-likelihood reconstruction

We begin with a description of the standard implementation of maximum-likelihood CMB a`m

reconstruction. The first step of the reconstruction process is to band-limit the temperature

field by smoothing, typically with a Gaussian kernel of width 10◦ FWHM. As this removes

information on the smallest scales, the map resolution can be downgraded to reduce computation

time. The â`ms in the range 2 ≤ ` ≤ `max, rec (represented for ease as the na`m -element vector â,

where na`m = (`max, rec − 1)(`max, rec + 3)) are then reconstructed from the npix unmasked pixel

temperatures, x, using (de Oliveira-Costa and Tegmark, 2006)

â = Wx. (2.1)
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The reconstructed spherical harmonic coefficients maximize the likelihood of the residual noise,

given the available data, if the reconstruction matrix, W, is

W = [YtC−1Y]−1YtC−1. (2.2)

Here, Y are the spherical harmonics calculated at each unmasked pixel1, and C is the pixel-space

noise covariance matrix

Cij = Rij +

`max∑

`=`max, rec+1

2`+ 1

4π
C̄`P`(r̂i · r̂j), (2.3)

where R is uncorrelated, low-amplitude regularizing noise added to prevent C from becoming

singular, C̄` is the smoothed theory CMB angular power spectrum, and P` are the Legendre

polynomials at unmasked pixels i, j. The sum over the multipoles `max, rec < ` ≤ `max ensures

that the small-angular-scale CMB multipoles we do not wish to reconstruct are treated as noise.

As stated above the CMB power must be artificially truncated to restrict the number of am-

biguous modes accessible to the reconstruction. The smoothing kernel is deconvolved from the

â`ms after reconstruction by dividing the â`ms by the kernel’s spherical harmonic transform.

If a foreground signal bi is now introduced, so that x = Ya + b + n and a is the CMB

signal uncorrelated with b and the noise n, the mean and variance of the reconstruction error

ε`m = â`m − a`m are

〈ε〉 = Wb (2.4)

and

〈εεt〉 − 〈ε〉〈εt〉 = WCWt, (2.5)

respectively.

Throughout this work, we reconstruct the spherical harmonic coefficients up to `max, rec = 10.

The noise covariance matrix includes CMB power in the range `max, rec < ` ≤ `max = 32 unless

explicitly stated; this value is chosen such that modes with ` > `max are suppressed to O(few %)

by the smoothing. The WMAP 5-year best-fit C`s (Nolta et al., 2009) are chosen for the theory

CMB angular power spectrum2. Input maps are smoothed at HEALPix (Górski et al., 2005)

resolution Nside = 512 before being downgraded to Nside = 16 to retain the information required

for the reconstruction while minimizing the number of pixels included in the noise covariance

matrix. Diagonal regularizing noise R is added at the level of 2µK2 to allow the inversion of

1Without loss of generality, the reconstruction matrix in this work is formed from the real spherical harmonics.
2Our results are not sensitive to the small differences between different WMAP releases in the best-fit cosmol-

ogy.
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the noise covariance matrix despite the presence of some null modes (which are irrelevant to the

reconstruction).

2.4 Smoothing-induced bias

This section outlines how a bias arises from smoothing-induced contamination of the unmasked

pixels (Aurich and Lustig, 2011; Copi et al., 2011). For clarity, we illustrate the smoothing-

induced bias in the maximum-likelihood reconstruction (and, later, our proposed solutions) with

results plotted in both harmonic and pixel space.

It is beyond the scope of this work to estimate accurate foreground residuals resulting from

different component separation methods; instead, we choose some residuals for the purpose of

illustration. Following Pontzen and Peiris (2010), the residual foregrounds are taken to be 1%

of the difference between the WMAP 7-year Internal Linear Combination (ILC) (Gold et al.,

2011) and V-band (Jarosik et al., 2011) temperature maps. The resulting map is indicative of

the extent and amplitude of the residual foregrounds in the WMAP 7-year ILC, the data-set for

which the smoothing-induced bias was first described (Efstathiou et al., 2010; Aurich and Lustig,

2011; Copi et al., 2011). It is important to note that a considerably higher level of contamination

is present in the foreground-reduced maps for each individual WMAP frequency band provided

by the WMAP team: contaminants of ∼ 50 times those used here are visible in these maps.

The residual foregrounds are restricted to the pixels within the sky cut, which in this work

masks only the Galaxy and not individual point-sources. These degree-scale point-source cuts

are, unsurprisingly, not found to significantly bias the large-scale reconstructed â`ms, and so for

clarity Galaxy-only contaminants and masks are considered.

The addition of simulated residuals and the spherical harmonic transform are linear, so the

smoothing-induced bias is given by the reconstructed â`ms of the simulated residual map. We

take the “standard” 10◦-FWHM-Gaussian-smoothed maximum-likelihood reconstruction, using

data outside the Galaxy-only part of the WMAP 7-year KQ85 mask, as our fiducial maximum-

likelihood estimator (hereafter the “Gaussian ML” â`ms). The Gaussian ML â`ms generated

from the simulated residual foregrounds are plotted (deep-blue solid line) in Fig. 2.1, along with

the full-sky a`ms (dotted line) for comparison. The smoothing-induced leakage from within the

sky cut is clear to see: the reconstruction picks up about half of the power in the foreground

residuals, even though the simulated residuals are entirely confined to the sky cut.

The largest peaks in the bias affect the â`ms satisfying ` = 2n,m = 0 for integer n (in

Fig. 2.1, HEALPix index `2 + ` + m = {6, 20, 42 . . .}) (de Oliveira-Costa and Tegmark, 2006),

and are positive for odd n, negative for even n. The pattern of these peaks can be explained by
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Figure 2.1: The spherical harmonic coefficients of the simulated foreground residuals, calculated
using the Gaussian ML reconstruction (deep-blue solid line), the full-sky data (dotted line)
and the 10◦ Top-Hat ML reconstruction (light-blue solid line on x-axis). It is clear that the
Gaussian ML reconstruction leaks around half of the information from within the sky cut; this
can be counteracted by smoothing with a top-hat kernel and using an extended mask. The
HEALPix index `2 +`+m maps each `, m combination to a unique index into the array of a`ms.

examining the reconstruction of the simulated Galactic residuals, plotted in Fig. 2.2, which are

coldest along the Galactic plane. Smoothing these residuals reduces the pixel temperature values

approximately symmetrically around the Galactic mask, and therefore pollutes the azimuthal

modes which are also symmetric about the equator. The bias is positive for modes which have

minima at the equator, and negative for those with maxima. There are also secondary peaks at

` = 2n+ 1,m = 1 (in Fig. 2.1, `2 + `+m = {13, 31, 57 . . .}), which again are positive for odd n,

negative for even n. These modes pick out the concentration of reconstructed foreground power

in the Galactic centre.

The leakage of information from within the sky cut can also be demonstrated in pixel-space.

Taking the WMAP 7-year ILC map, the full-sky a`ms are extracted, and the Gaussian ML

reconstruction is performed. The spherical harmonic coefficients recovered in each case are then

used to reconstruct the input ILC map using only 2 ≤ ` ≤ 10, as plotted in Fig. 2.3. The maps

formed from the full-sky-a`ms (top-left) and reconstructed from Gaussian-ML-â`ms (top-right)

are almost identical, even in the Galactic plane, confirming that the reconstruction has access

to information well inside the sky cut.
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Figure 2.2: Clockwise, from top left: simulated Galactic foregrounds, smoothed by a 10◦-FWHM
Gaussian and masked with the Galaxy-only KQ85 mask; the ` ≤ 10 Gaussian ML â`ms recon-
structed from the simulated Galactic foregrounds; the real spherical harmonics Y5 1 and Y4 0.
The simulated foregrounds yield a negative bias in the Y4 0 mode, and a positive bias in the Y5 1

mode.

Although the bias illustrated in Fig. 2.1 looks problematic, its amplitude is at least reduced

over using the contaminated full sky, and so the simple Gaussian-ML procedure may yet turn out

to be useful. To compare with other possible approaches, we first need to discuss its standard

deviation – i.e. the scatter induced by the ` > `max, rec modes – which is calculated using Eq. 2.5

and plotted (as the deep-blue narrowest band) in Fig. 2.4. This is a few µK at most. For a given

`, the modes that are reconstructed with the least precision are those with |m| = `, with the

m = ` modes typically the worst. This confirms the observation in Pontzen and Peiris (2010)

that the sky cut removes the most information from modes with power concentrated towards the

equator, and particularly those with extrema at φ = 0◦, where the mask is at its widest (Copi

et al., 2011). The mask is plotted for reference in Fig. 2.5, along with examples of the affected

modes. We see that, typically, three modes per ` will have increased bias or variance, but for

most modes both the mean reconstruction error and its variance will be small.

In order to compare estimators, we must first quantify their performance over the range of

multipoles considered. The performance measure

z`m = 〈ε2`m〉

= mean(ε`m)2 + var(ε`m) (2.6)
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Figure 2.3: The 7-year ILC 2 ≤ ` ≤ 10 modes, plotted using (clockwise from top-left) full-sky
a`ms, Gaussian ML â`ms, 5◦ Top-Hat WF â`ms and 5◦ Top-Hat ML â`ms.

provides the expected size of the reconstruction error ε`m for each mode: summing over all modes

Z =
∑

`,m

z`m (2.7)

therefore yields a complete measure of each estimator’s performance. Any alternative estimator

which removes the smoothing-induced bias should be preferred only if its Z value is lower than

that of the Gaussian ML reconstruction, and, indeed, the contaminated full-sky a`ms. In fact,

using the 1% ILC-V foreground residuals, Z ' 33µK2 using the full-sky a`ms, compared to ∼

265µK2 for the Gaussian ML estimator. If the residual foregrounds employed in this work are an

accurate reflection of those present in the WMAP 7-year ILC map, then the contaminated full-sky

a`ms provide a better estimate of the cosmological signal than the Gaussian ML reconstruction.

The second form of Eq. 2.6 shows that both bias (see Fig. 2.1) and variance (see Fig. 2.4) in the

reconstruction increase the value of Z. The variance term is independent of the contamination,

while the bias scales linearly with the contamination. Therefore, if the amplitude of residual

foregrounds in the ILC map is higher than in our illustrative example, the reduction in bias due

to the use of the Gaussian ML â`ms will eventually overcome the variance introduced by the

reconstruction. For residual levels 3 − 4 times higher than those used here, the Gaussian ML

reconstruction should be used instead of the contaminated full-sky a`ms. However, as we have

seen, the Gaussian ML estimator (as implemented thus far) does not eliminate the bias due to
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Figure 2.4: The one-standard-deviation ranges of the reconstruction error ε`m for the Gaussian
ML â`ms (narrowest, deep-blue band), 5◦ Top-Hat ML â`ms (widest, light-blue band), and Top-
Hat WF â`ms (intermediate, mid-blue band).

smoothing-related leakage of contaminants from within the masked region.

While our simulated foreground residuals are simply meant to be indicative, we nevertheless

expect that the smoothing bias is mainly sensitive to the amplitude of the residuals, and not

their precise morphology. This can be seen in Fig. 2.6, where we have modeled the residuals as a

simple bar in the Galactic plane, while rescaling the amplitude to match our 1%(ILC-V) model.

This highly simplified model is able to capture most of the features of the bias in harmonic space,

as seen in the lower panels of this Figure.

2.5 Eliminating the bias

At this stage, we are presented with something of a conundrum: smoothing is essential to the

reconstruction process, but it is exactly this smoothing that is biasing the results. The simplest

solution to this issue is to remove the areas of the sky that are within one smoothing scale

of the main Galactic sky cut. However, the smoothing kernel typically used in the standard

reconstruction algorithm is a Gaussian, with support across the full sky in pixel space, and the

set of contaminated pixels is hence poorly defined. This problem can be solved by using a kernel

with finite pixel-space support – for simplicity we choose a top-hat – as all contaminated pixels
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Figure 2.5: Top: the WMAP 7-year Galaxy-only KQ85 mask (light-blue central region) extended
by 2.5◦ (mid-blue) and 5◦ (dark-blue). Bottom: the real spherical harmonics Y4 4 and Y4−4. The
concentration of Y`±` mode power towards the equator results in increased estimator variance
in those modes.

fall within a kernel’s radius of the mask.

Näıvely selecting the diameter of the top-hat smoothing kernel to be 10◦, we reconstruct the

simulated foreground residuals using the Galaxy-only KQ85 mask extended by 5◦ – hereafter

the “10◦ Top-Hat ML” reconstruction. The results are plotted in light blue (pale line along

x-axis) in Fig. 2.1: the smoothing-induced bias has been eliminated. However, the measure

of reconstruction quality has deteriorated dramatically to Z ' 11 252µK2, significantly worse

than the Gaussian ML reconstruction. There are two reasons for this increase in Z, which is

now sourced entirely by increased variance in the reconstruction. Firstly, the top-hat smoothing

kernel has support over a greater range of multipoles than the Gaussian kernel, and so more

ambiguous modes contribute to the covariance matrix (in this case, and for all further kernels, we

increase `max to 1024 to capture all relevant modes, even though at 10◦ the smoothing kernel is

effectively band-limited at ` ∼ 100).3 The second factor is that the reconstruction-error variance

increases very rapidly with the area of the sky that is masked (de Oliveira-Costa and Tegmark,

2006). This suggests the use of narrower smoothing kernels, although this necessarily increases

3Truncating the kernel by selecting a lower `max leads to O(10%) variations in the results.
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Figure 2.6: Top: the residual foreground map employed in this work (left), and a simple model
comprising a 3◦-wide −20µK equatorial band. Bottom: the full-sky a`ms (dotted) and recon-
structed Gaussian ML â`ms (solid) of the residual foreground maps. The simple band model
captures most of the features of the smoothing-induced bias injected by the more-complex resid-
uals.

the power of the high-` noise.

The interplay between the variance injected by decreased smoothing and increased masking is

shown in Fig. 2.7. Here, the total reconstruction-error variance is plotted for top-hat smoothing

kernels of diameter 3◦ − 10◦, and hence mask extensions of 1.5◦ − 5◦. The reduction in variance

due to minimizing the sky cut dominates the added noise from narrower smoothing. We therefore

select the width of the smoothing kernel to be as small as possible, given the resolution of the

degraded map. At Nside = 16, the pixels are ∼ 3◦ across, so to avoid injecting bias through

pixelization (Copi et al., 2011) (which would not be captured by Eq. 2.5) we choose our optimal

kernel diameter to be just larger: 5◦. Hereafter, we refer to this reconstruction – using the 5◦

top-hat smoothing kernel and Galaxy-only KQ85 mask extended by 2.5◦ – as the “5◦ Top-Hat

ML” reconstruction.

The reconstruction-error variance calculated for the 5◦ Top-Hat reconstruction is plotted as

the light-blue outermost region of Fig. 2.4. Even using the minimum possible mask extension

the reconstruction-error variance is still an order of magnitude larger than that of the Gaussian

ML estimator. In terms of the measure of reconstruction quality, the biased Gaussian ML recon-

struction (Z ∼ 265µK2) should be strongly preferred to the 5◦ Top-Hat ML case (Z ∼ 8466µK2)

for residual levels comparable to those used in this work. As the Top-Hat ML reconstruction is
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Figure 2.7: The impact of mask extension and smoothing-kernel diameter on the quality of
the bias-free maximum-likelihood reconstruction. Reconstruction-error variances are calculated
using top-hat smoothing kernels of varying diameter, and extending the KQ85 mask by one
kernel radius each time. Smoothing at the lowest-possible scale will produce the most faithful
reconstruction. Note that the curve is not smooth as both the extent and shape of the mask
change as it is extended.

unbiased, this value of Z is fixed (for a given sky cut). Thus, only if the residuals are greater

than ∼ 25% ILC−V will the 5◦ Top-Hat ML reconstruction outperform the Gaussian ML re-

construction. Note that the quality of the reconstruction could be improved further if it was

performed at higher resolution, as smaller smoothing kernels could be used. This will necessarily

have to be traded off against the increased computational requirements.

2.6 Reducing the variance

The increase in variance encountered when using extended sky cuts is far beyond that expected

due to the reduction in pixel count: reducing fsky from 81% to 74% should, assuming uncorrelated

pixels for simplicity, increase the variance by only ∼ 10%. The dominant issue is that the

maximum-likelihood reconstruction allows the temperature field in the masked region of the sky

to have infinite variance. For small sky cuts (and small `max, rec) this is fine: one cannot “hide”

large-scale power within the cut, and so the variance on the large-scale â`ms is low. Extending

the KQ85 mask not only increases its overall width, but also closes a number of small gaps that
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allow the estimator limited access to the poorly-constrained equatorial modes (see Fig. 2.5). The

estimator is therefore free to fill the cut with significant low-` power (compare Fig. 2.3 top-right

and bottom-left), and the estimator variance rises rapidly.

The variance of the reconstruction error can be reduced by enforcing a prior on the power

within the Galactic cut using Wiener-filtering (Method 5 in Tegmark (1997a); see also Bielewicz

et al. (2004); Wiener (1964); Bunn et al. (1994); Zaroubi et al. (1995)). The Wiener-filtered

â`ms then maximize the posterior probability of reconstructing the underlying a`ms, given the

trusted data and theoretical power spectrum. In practice, this is achieved by adding a theoretical

(inverse) covariance matrix for the multipoles of interest to the reconstruction matrix

W = [S−1 + YtC−1Y]−1YtC−1. (2.8)

S here is a diagonal na`m × na`m matrix with elements equal to the smoothed theory power

spectrum C̄`. The theory prior restricts this “Top-Hat WF” reconstruction from filling the sky

cut with arbitrary power (see Fig. 2.3 bottom-right), and reduces the variance of the estimator’s

reconstruction error accordingly (see the mid-blue intermediate region in Fig. 2.4). The analytic

expectation for the reconstruction-error variance is

〈εεt〉 − 〈ε〉〈εt〉 = S [S + N]−1N, (2.9)

where N is the noise power spectrum, defined to be N = [YtC−1Y]−1 (i.e. the variance

of the Top-Hat ML reconstruction error). By adding a theory prior to the power within the

sky cut, and hence requiring finite power in that region, the Wiener-filtered reconstruction

tends to produce â`ms that are closer to zero than the maximum-likelihood case. While this

could be seen as biasing the â`ms toward lower values4, it can also be interpreted as being

conservative, and applying the prior belief that the information within the mask is similar to the

trusted information outside the mask. In other words, we should be happy to trade off a small

multiplicative bias against a significant reduction in variance.

This is automatically encapsulated in the measure of reconstruction quality Z for the 5◦

Top-Hat WF estimator, which has improved to ∼ 1521µK2. However this is still worse than

that of the Gaussian ML estimator. The bias arising in the Top-Hat WF reconstruction is not

from smoothing but from a prior, so Z is fixed for a given mask, and always lower than that of

the corresponding Top-Hat ML reconstruction. For contamination levels of & 10% ILC−V (such

as those found in the foreground-reduced maps for the individual WMAP frequency bands), the

4Assuming for clarity zero noise, the Wiener-filtered reconstruction yields â = S[S+N]−1a, i.e. a multiplica-
tive bias. Note that the ensemble average 〈â〉 = 〈a〉 = 0.
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5◦ Top-Hat WF reconstruction therefore represents the most reliable estimator considered in

this work.

We do not know the precise magnitude or morphology of the residual foregrounds in the

WMAP data. We can, however, examine the Gaussian ML and Top-Hat WF reconstructions of

the ILC by eye to determine if there is an obvious impact due to residual foregrounds. The â`ms

generated from these two reconstructions are plotted in Fig. 2.8, along with the estimator stan-

dard deviation (
√
〈|â`m|2〉 − 〈â`m〉2). Comparing the two plots, we see that there is very little

difference between the â`ms returned in each case. Further, no modes look statistically anoma-

lous at the 3σ-level, even those that we expect to be contaminated from the simple residuals

model used here.

2.7 Relation of a`m reconstruction to the QML estimator

for the C`s

We have so far discussed estimating the full-sky a`ms from cut-sky data, which is equivalent

to reconstructing the smoothed temperature field. However, in the context under which the

smoothing-induced bias was revealed (Efstathiou et al., 2010; Aurich and Lustig, 2011; Copi

et al., 2011) it is in fact only the angular power spectrum C` of the temperature field which is

required.

A popular method for estimating the full-sky angular power spectrum is to adopt the

quadratic maximum-likelihood estimator as first derived in Tegmark (1997b). It has been noted

(see e.g. Section 3 of Efstathiou et al. (2010) for a complete discussion) that the QML estimator

can be formed using the maximum-likelihood â`ms. On the surface, the QML estimates (hence-

forth denoted Ĉ`) may therefore seem to be susceptible to similarly problematic contamination

from a smoothing stage.

However, this is not the case: in fact the Ĉ`s are far more robust to the content of the cut

because the smoothing can be conducted on vastly smaller scales (e.g. 1◦ in Pontzen and Peiris

(2010)). Note that Copi et al. (2011) miss this point, because they consider only two extreme

cases: (i) smoothing at 10◦ and (ii) failing to smooth. They therefore reach the erroneous

conclusion that the QML estimator is susceptible to contamination from within the mask. We

explicitly verified that the pipeline used by Pontzen and Peiris (2010) is independent of any

contamination placed fully inside the mask.

The above paragraphs at first appear to be contradictory, since they simultaneously claim

(a) that the QML power spectrum estimates can be formed out of the ML temperature field

55



reconstruction; and (b) that the QML power spectrum estimates can still be constructed from

maps smoothed on degree scales (whereas the â`ms will necessarily become noisy for sufficiently

high `max, rec). However, this is not a true contradiction because the QML estimates are not

formed directly from the noisy â`ms, but rather through an expression (Eq. 23 of Efstathiou et al.

(2010)) which specifically downweights poorly constrained modes. It is this cautious treatment

of ambiguous modes which makes power spectrum estimation, as opposed to a`m reconstruction,

so well-behaved, irrespective of the shape of the smoothing kernel employed.

2.8 Discussion

Maximum-likelihood estimators, â`m, are often used to reconstruct the large-scale spherical har-

monic coefficients, a`m, from partial-sky data. The technique relies on smoothing to restrict

the amount of small-scale noise accessible to the reconstruction, but smoothing has been shown

to contaminate “clean” pixels with residual foregrounds from within the sky cut. In this work,

we have examined the impact of this smoothing-induced bias on the maximum-likelihood recon-

struction. We have shown that it is possible to mitigate the bias by removing the contaminated

regions, but these are only well-defined if smoothing is performed using a kernel with finite

support on the sky. This precludes the use of the commonly used Gaussian kernel. Cutting a

larger portion of the sky greatly increases the variance of the reconstruction, but it is possible

to counteract this effect by enforcing a prior on the reconstructed coefficients using a Wiener

filter. We have therefore proposed an estimator – using top-hat smoothing, extended masks

and a Wiener-filtered reconstruction – which does not suffer from smoothing-induced bias. By

considering the expectation of the square of the reconstruction error, Z =
∑
`,m〈(â`m − a`m)2〉,

we have compared the performance of the maximum-likelihood and Wiener-filtered estimators

in the presence of simulated CMB foreground residuals.

The reconstruction performance measure Z scales with the estimators’ bias and variance,

which in turn are governed by the amplitude of contamination and the size of the sky cut, respec-

tively. The fiducial maximum-likelihood reconstruction is performed using relatively small sky

cuts, but is susceptible to contamination through smoothing-induced bias; the finite-smoothing

Wiener-filtered reconstruction does not suffer from smoothing-induced bias, but makes use of

extended masks. Increasing the level of contamination therefore increases Z for the maximum-

likelihood reconstruction only, which suggests that there is a level of contamination above which

one should switch from the maximum-likelihood to the Wiener-filtered reconstruction.

Given an estimate of the morphology and amplitude of the contaminants within the cut sky,

one can predict which modes will be biased and by how much, and hence determine the threshold
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at which one should swap estimators. We find that this threshold is relatively insensitive to the

precise morphology of foreground residuals at large scales, and is mainly governed by their am-

plitude. Calculating Z for the two estimators in the presence of estimated foreground residuals,

we determine this threshold to be ∼ 10 times the amplitude of the foreground residuals used in

this work. Assuming that the ILC contains similar levels of contamination to those used here, we

therefore recommend the use of either the contaminated full-sky a`ms or the fiducial maximum-

likelihood â`ms when handling this data-set. However, when using foreground-reduced maps for

individual WMAP frequencies, which contain much greater foreground residuals, the Wiener-

filtered reconstruction will provide the best estimate of the large-scale underlying CMB signal.

Note that, as the Wiener-filtered â`ms are a maximum-posterior solution, care must be taken

if the reconstruction output is being used for further model-selection steps. The reconstruction

techniques are, however, most commonly used to test the null hypothesis, in which case the prior

employed in this work is completely appropriate.

For problems requiring only a power spectrum (as opposed to the full temperature field) the

issues described in this paper are essentially irrelevant because the smoothing can be conducted

on vastly smaller scales, the resulting range of poorly constrained modes being automatically

downweighted.
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Figure 2.8: The reconstructed WMAP 7-year ILC â`ms, calculated using the Gaussian ML recon-
struction (top) and the 5◦ Top-Hat WF reconstruction (bottom). The shaded areas represent
the estimator standard deviations. The modes that are most contaminated by the simulated
foregrounds in the Gaussian ML reconstruction are indicated, along with their expected sign, by
dashed (Yeven 0) and dash-dotted (Yodd 1) lines.
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Chapter 3

First observational tests of eternal

inflation: analysis methods and

WMAP 7-year results

3.1 Abstract

In the picture of eternal inflation, our observable universe resides inside a single bubble nucleated

from an inflating false vacuum. Many of the theories giving rise to eternal inflation predict that

we have causal access to collisions with other bubble universes, providing an opportunity to

confront these theories with observation. We present the results from the first observational

search for the effects of bubble collisions, using cosmic microwave background data from the

WMAP satellite. Our search targets a generic set of properties associated with a bubble collision

spacetime, which we describe in detail. We use a modular algorithm that is designed to avoid

a posteriori selection effects, automatically picking out the most promising signals, performing

a search for causal boundaries, and conducting a full Bayesian parameter estimation and model

selection analysis. We outline each component of this algorithm, describing its response to

simulated CMB skies with and without bubble collisions. Comparing the results for simulated

bubble collisions to the results from an analysis of the WMAP 7-year data, we rule out bubble

collisions over a range of parameter space. Our model selection results based on WMAP 7-year

data do not warrant augmenting ΛCDM with bubble collisions. Data from the Planck satellite

can be used to more definitively test the bubble collision hypothesis.
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3.2 Introduction

Observations of the cosmic microwave background (CMB) radiation have ushered in a new

era of precision cosmology. Full-sky temperature maps produced by the Wilkinson Microwave

Anisotropy Probe (WMAP) (Bennett et al., 2003a) have confirmed with high precision that

the observed temperature fluctuations are consistent with a nearly Gaussian and scale invari-

ant primordial power spectrum, as predicted by inflation. The recently launched Planck satel-

lite (Tauber et al., 2010) has a resolution three times better than that of WMAP, with an order of

magnitude greater sensitivity, and significantly wider frequency coverage (allowing for far more

robust foreground removal, and therefore reduced systematics). These high quality data sets

allow for the possibility of observing deviations from the standard inflationary paradigm, some

of which could have drastic consequences for our understanding of the universe and its origins.

Perhaps the largest gap in our description of the early universe lies in an understanding of its

initial conditions. One possibility, motivated by the proliferation of vacua in compactifications

of string theory (known as the string theory landscape (Susskind, 2003)), is that our observ-

able universe is only a tiny piece of a vast multiverse, the majority of which is still inflating.

This picture of eternal inflation (for a review, see, e.g. Aguirre (2008)) arises when the rate

at which local regions exit an inflating phase is outpaced by the accelerated expansion of the

inflating background. Eternal inflation is a fairly generic consequence of any theory containing

positive vacuum energy and multiple vacua, highlighting the importance of understanding how

this scenario might be confronted with observational tests.

The first attempts to embed our cosmology inside an eternally inflating universe led to “open

inflation” (Bucher et al., 1995; Gott, 1982); see Garcia-Bellido (1997) for a review. In this

scenario, a scalar field (or set of scalar fields) has a potential with a high energy metastable

minimum that drives the eternally inflating phase. Transitions out of this vacuum proceed

via the Coleman-de Luccia (CDL) instanton (Coleman, 1977; Coleman and De Luccia, 1980),

resulting in expanding bubbles inside which the scalar field rests on an inflationary plateau. The

symmetries of the CDL instanton ensure that there is a very nearly homogeneous and isotropic

open universe inside the bubble; inflation, reheating, and standard cosmological evolution follow.

In any given bubble, the future light cone of the nucleation event forms the “Big Bang” (where

the scale factor vanishes) of an open FRW universe. The eternally inflating phase outside our

bubble can therefore be thought of as a pre-Big Bang epoch, and one might expect inflation

to erase any of the scant observational evidence of our parent vacuum. In single bubble open

inflation, various anomalies are induced in the CMB temperature power spectrum (see Garcia-

Bellido (1997) and references therein), but unfortunately, the size of these effects decreases with
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the present energy density in curvature (related to the number of inflationary e-folds), rendering

them negligible at all but the lowest multipoles where cosmic variance dominates. However, our

bubble does not evolve in isolation. There are other nucleation events from the false vacuum,

containing a phase that might be identical to ours, or perhaps very different. If one of these

secondary nucleation events occurs close enough to our bubble wall, then a collision inevitably

results. In fact, since our bubble grows to reach infinite size, there are an infinite number of

collisions (Guth and Weinberg, 1981; Guth and Weinberg, 1983; Gott and Statler, 1984; Garriga

et al., 2007) (a finite subset of which are causally accessible to any one observer). This raises

the possibility that if such collisions are both survivable and only small perturbations on top of

standard cosmology, they might leave observable signatures of eternal inflation (Aguirre et al.,

2007); it is these signatures which our analysis targets.

If we are to detect such bubble collisions, their predicted signatures must be consistent with

our observed cosmology, but sufficiently distinct to be differentiated from other possible signals

in the CMB. In addition, the theory must predict that we expect to have causal access to bubble

collisions. While these criteria are not met in every model of eternal inflation, recent work (Guth

and Weinberg, 1981; Guth and Weinberg, 1983; Hawking et al., 1982; Chao, 1983; Gott and

Statler, 1984; Garriga et al., 2007; Aguirre et al., 2007; Aguirre and Johnson, 2008; Aguirre

et al., 2009; Chang et al., 2008, 2009; Dahlen, 2010; Freivogel et al., 2009; Easther et al., 2009;

Larjo and Levi, 2010; Zhang and Piao, 2010; Czech et al., 2010) (for a review, see Aguirre and

Johnson (2009)) has established that bubble collisions could in some theories be both expected

and detectable. Bubble collisions produce a fairly characteristic set of inhomogeneities in the

very early universe, which are processed into temperature anisotropies in the CMB. From the

spherical symmetry of the colliding bubbles, the collision possess azimuthal symmetry, and by

causality must be confined to a disc on the sky. The CMB temperature and its derivatives

need not be constant across the causal boundary. Therefore, the signals we are searching for

are localized, and because they are primordial, consist of a long-wavelength modulation of the

standard inflationary density fluctuations inside the affected region (Chang et al., 2009). The

amplitude and angular scale of the signal is dependent upon the underlying model and kinematics

of the collision.

These general features suggest a set of strategies for data analysis. The localization of the

collision implies that wavelet analysis could be a sensitive tool for picking out both the location

and angular scale of a candidate signal. The causal boundary, across which the temperature

and its derivatives need not be constant, suggests the use of edge detection algorithms similar

to those used in searches for cosmic strings (Kaiser and Stebbins, 1984; Lo and Wright, 2005;
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Danos and Brandenberger, 2010; Amsel et al., 2008). Finally, the prediction that the tempera-

ture modulation induced by the collision is rather long-wavelength yields a sufficiently generic

template to perform a full Bayesian parameter estimation and model selection analysis.

In this paper, we describe a modular analysis algorithm designed to look for the signatures of

eternal inflation, and apply it to the WMAP 7-year data (Jarosik et al., 2011). This algorithm

can easily be adapted to test any model that predicts a population of spatially localized sources

in addition to the standard fluctuations predicted by ΛCDM. A summary of our results was

presented in Feeney et al. (2011b); in this paper we describe our analysis in detail. Currently

available full sky CMB data are rather limited in their sensitivity to the signatures of bubble

collisions listed above; the main current limitation is the low resolution. Therefore, we apply our

algorithm to current data mainly as a validation exercise; to exploit its full power would require

future high resolution data, e.g., from Planck.

The individual steps of our analysis pipeline are calibrated using realistic simulations of the

WMAP experiment with and without bubble collisions. The calibrated pipeline applied to data

is fully automated, identifying the candidate signals and processing them without any human

intervention. This removes any a posteriori choices from our analysis, which must be carefully

avoided in any analysis of a large data-set such as the WMAP 7-year data (Bennett et al., 2011).

The plan of the paper is as follows. In Sec. 3.3, we review some of the background on bubble

collisions in eternal inflation, and outline the predicted observable signatures. Our analysis

pipeline is summarized in Sec. 3.4. We describe some properties of the WMAP experiment and

our simulations in Sec. 3.5, and detail our analysis tools in Sec. 3.6. Sec. 3.7 summarizes the

results of our analysis of the WMAP 7-year data, and we conclude in Sec. 3.8.

3.3 The observable effects of bubble collisions

The simplest model of eternal inflation involves a single scalar field in four dimensions, with

a double-well potential. In many models (as long as the average curvature of the potential

between the minima is small compared to the Planck scale), the Coleman-de Luccia (CDL)

instanton (Coleman, 1977; Coleman and De Luccia, 1980) mediates a transition from the false

(higher energy) to the true (lower energy) vacuum. This tunneling event corresponds to the

appearance of an expanding bubble of the true vacuum embedded in the false. As long as the

probability that a bubble nucleates in each horizon volume of the false vacuum during a Hubble

time is less than one (so that the background expansion of the false vacuum on average prevents

bubbles from merging), the phase transition never completes and inflation is eternal (Guth and

Weinberg, 1981) (see Sekino et al. (2010) for a modern treatment of the percolation problem
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in eternal inflation). The O(4)-invariance of the instanton guarantees that the bubble interior

possesses SO(3,1) symmetry, and therefore contains an infinite open Friedman Robertson Walker

(FRW) universe. Although homogeneity is ensured by the symmetries of the instanton, if the

interior of a bubble is to resemble our own universe, a second epoch of inflation inside the bubble

is necessary to dilute the negative curvature and provide the correct spectrum of primordial

density perturbations to seed structure. Models of this type are known in the literature as open

inflation, and have been explored in detail (see Garcia-Bellido (1997)).

The signatures of single-bubble open inflation include negative curvature and modifications to

the power spectrum. These modifications are most important at large angular scales (see Garcia-

Bellido (1997) and references therein) where cosmic variance is dominant, and would be very

difficult to detect. Since curvature alone would not be a very distinguishing prediction, we do

not consider these signals further.

A less ambiguous signature of eternal inflation would be the visible remnants of collisions

between bubbles. Although the bubbles formed during eternal inflation do not percolate, there

are many (in fact, an infinite number of) collisions. These collisions lead to inhomogeneities in

the inner-bubble cosmology, perhaps leaving observable signatures in the CMB. Assessing the

observational consequences of bubble collisions in an eternally inflating universe has been an

active area of research (Garriga et al., 2007; Aguirre et al., 2007; Aguirre and Johnson, 2008;

Aguirre et al., 2009; Chang et al., 2008, 2009; Dahlen, 2010; Freivogel et al., 2009; Easther et al.,

2009; Larjo and Levi, 2010; Zhang and Piao, 2010; Czech et al., 2010) (for a review, see Aguirre

and Johnson (2009)). These studies have established that a number of criteria necessary for the

observation of bubble collisions (Aguirre et al., 2007) can be satisfied, at least in some models:

Compatibility: In order to satisfy this criterion, there must be a bubble we can collide with

that only minimally disturbs the homogeneity of the observable portion of the surface of last

scattering. Such collisions do seem to exist, as evidenced by thin-wall junction condition anal-

ysis (Aguirre and Johnson, 2008; Chang et al., 2008) as well as numerical simulations (Aguirre

et al., 2009) and a study of the inflaton field in a background thin-wall collision geometry (Chang

et al., 2009).

Probability: We should expect to have a collision in our causal past. The number of

collisions in our past is N̄ = λV F4 , where λ is the bubble nucleation probability per unit four-

volume and V F4 is the four-volume outside the bubble to which we have causal access. The

expected number (assuming the original open FRW foliation) is formally infinite (Aguirre et al.,

2007); however, collisions that contribute to this divergence only produce very long wavelength

fluctuations at last scattering, and so would not be observable (Aguirre et al., 2009; Freivogel
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et al., 2009) (this is similar to the infrared divergence found in models of slow-roll inflation). The

average number of collisions that affect the observable portion of the surface of last scattering is

finite (Freivogel et al., 2009; Aguirre and Johnson, 2009), and is given by

N̄ ' 16π

3
λH−4

F

(
HF

HI

)2

Ω
1/2
k , (3.1)

where HF is the false vacuum Hubble constant, HI is the inflationary Hubble constant inside

our bubble, and Ωk is the current component of energy in curvature. For the expected number

of observable collisions to be one or larger, the separation of scales between HF and HI must be

large enough to compensate for the low probability λ (which is exponentially suppressed because

this is a tunneling process) and the observational constraint Ωk . .0084 (Komatsu et al., 2011).

Given a particular scalar potential underlying eternal inflation, N̄ for each possible type of

collision is fixed. However, in a theory with a complicated potential landscape for the scalar

field(s), it makes sense to think of N̄ as a continuous parameter with some prior probability

distribution1. Without detailed knowledge of the theory underlying eternal inflation and an

associated measure, it is difficult to assess how likely it is to have N̄ > 1, but see Freivogel

et al. (2009) and Aguirre and Johnson (2009) for some speculative comments. There is also an

exponential pressure from the nucleation rates towards N̄ � 1 or N̄ � 1. In the following, we

assume N̄ can be order one.

Observability: Since the effects of a collision must pass through the entire inner-bubble

cosmology, they can be thought of as perturbations of the Big Bang in an FRW cosmology. As

such, they are stretched by inflation, and we expect the strength of most signatures to scale with

(some power of) Ωk. We therefore must require that there are not too many more e-folds than

required to satisfy the observational bound on curvature. Given a field theory model, the number

of e-folds of inflation inside the bubble is uniquely determined by the instanton. However, if we

consider a landscape of scalar potentials, then it is necessary to find a measure over the number

of inflationary e-folds (or equivalently Ωk). For some work in this direction, see e.g. Freivogel

et al. (2006) and De Simone and Salem (2010).

Much remains to be learned about the full spectrum of possible outcomes of a bubble collision

and the exact details of the associated observational signatures. Nevertheless, all potentially

observable bubble collisions involving two bubbles share a sufficiently general set of properties

to allow for a meaningful observational search even in the absence of a detailed model. In

summary, we expect all such observable bubble collisions to possess:

1We return to this point in Sec. 3.6.3 when discussing the Bayesian framework for testing bubble collision
models.
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• Azimuthal symmetry: A collision leaves an imprint on the CMB sky that has azimuthal

symmetry. This is a consequence of the SO(2,1) symmetry of the spacetime describing the

collision of two vacuum bubbles (Chao, 1983; Garriga et al., 2007; Aguirre et al., 2007).

• A causal boundary: The surface of last scattering can only be affected inside the future

light cone of a collision event. The intersection of our past light cone, the future light cone

of a collision, and the surface of last scattering is a ring. This is the causal boundary of

the collision on the CMB sky. The temperature and its derivatives need not be continuous

across this boundary. Neglecting the backreaction of the collision on the geometry of the

bubble interior, the distribution of ring sizes was found in Freivogel et al. (2009) to be

dN̄

dθcrit
∼ 4πλH−4

F

(
HF

HI

)2

Ω
1/2
k sin (θcrit) , (3.2)

where θcrit is the angular radius measured from the center of the disc to the causal boundary

and the other quantities are as defined in Eq. 3.1.

The form of Eq. 3.2 can be simply broken down into its constituent parts. The H−4
F

(
HF
HI

)2

factor describes the volume in the inflating bulk – a shell around the observation bubble

– in which future bubble nucleations will result in collisions; multiplying by the rate of

nucleations per unit four-volume, λ, gives the expected number of collisions. For the

collisions to then be observable, we then require two criteria to be satisfied. Firstly, there

must not be too much slow-roll inflation, post-bubble-nucleation, that the effects of the

collision are completely smoothed away: the number of observable collisions therefore

increases with the energy density in curvature, Ωk. Secondly, the collision must intersect

the observer’s last-scattering surface: a simple geometric calculation (Freivogel et al., 2009)

shows that the majority of such collisions are half-sky in scale (collisions covering all or

none of the last-scattering surface are by definition not detectable), and that the number

depends on sin θcrit.

• An overall modulation of the background fluctuations: We assume that the temperature

fluctuations, including the effects of the collision, at a location on the sky n̂ can be written

as (Gordon et al., 2005; Chang et al., 2009)

δT (n̂)

T0
= (1 + f(n̂))(1 + δ(n̂))− 1, (3.3)

where f(n̂) is the modulation induced by the collision and δ(n̂) are the temperature fluctu-

ations induced by modes set down during inflation. This is motivated by the observation
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that the main effect of the bubble collision is to slightly advance or retard the inflaton

inside our bubble. The modulation is multiplicative under the assumption that the normal

inflationary density fluctuations simply ”paint” the perturbed surface of last scattering

and have identical statistical properties in both the regions affected and unaffected by the

collision.

• Long-wavelength modulation: A collision is a pre-inflationary relic. The effects of a colli-

sion inside the causal boundary are stretched by inflation, and so we can expect that the

relevant fluctuations are large-scale. As we describe below, this implies that the tempera-

ture modulation due to a collision centered on the north pole (θ = 0) has the form

f(n̂) = (c0 + c1 cos θ +O(cos2 θ))Θ(θcrit − θ) , (3.4)

where the ci are constants related to the properties of the collision, θ is the angle measured

from the center of the affected disc, and Θ(θcrit−θ) is a step function at the causal boundary

θcrit. Truncating the sum at O(cos θ), the constants c0 and c1 can be expressed in terms

of a central amplitude z0 and edge discontinuity zcrit:

c0 =
zcrit − z0 cos θcrit

1− cos θcrit
, c1 =

z0 − zcrit

1− cos θcrit
, (3.5)

as shown in Fig. 3.1. Allowing the collision to be centered on an arbitrary location {θ0, φ0}

on the celestial sphere, the induced temperature modulation can be expressed as a function

of five parameters: {z0, zcrit, θcrit, θ0, φ0}. A modulation of this form was first derived

in Chang et al. (2009), where it was obtained from the observed modulation of a field

representing the inflaton inside our bubble, numerically evolved in a background thin-wall

bubble collision geometry. These authors did not predict the existence of a temperature

discontinuity zcrit. While further work is needed to better predict the precise form of

the template, in our analysis we allow bubble collisions to produce modulations with and

without discontinuities.

In Fig. 3.2, we show the Poincare-disc representation2 (see Aguirre et al. (2007) for the details

of this construction) of the surface of last scattering inside our parent bubble. The collision

affects the shaded portion of this surface. The observed CMB is formed at the intersection of

our past light cone (dashed circle) with the surface of last scattering, which in this case includes

regions both affected and unaffected by the collision. From the underlying azimuthal symmetry,

2A Poincare disc is a mapping of a hyperbolic geometry – i.e. a negatively curved space, such as a bubble
interior – onto a unit disc. Points at infinity are mapped onto the boundary of the disc; geodesics are circular
arcs (or diameters) that intersect the disc boundary at right angles.
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Figure 3.1: The radial temperature modulation Eq. 3.4 induced by a bubble collision centered
on the the north pole (θ = 0).

the collision appears as a disc on the observer’s CMB sky. Zooming in on the neighborhood

of our past light cone (inset), we can treat the universe as being flat. In addition, because we

have causal access to much less than one curvature radius at last scattering (again from the

observational bound on Ωk), the collision has an approximate planar symmetry.

The collision introduces pre-inflationary inhomogeneities into our bubble. The exact nature of

these inhomogeneities depends on the specific model underlying the formation of our bubble and

the subsequent epoch of slow-roll inflation, as well as the specifics of the collision. In dramatic

cases, the collision ends slow-roll inflation everywhere within its future light cone (Aguirre et al.,

2009), induces the transition to another vacuum state (Easther et al., 2009; Giblin et al., 2010;

Johnson and Yang, 2010), or produces a post-collision domain wall that eats into our bubble

interior (Aguirre and Johnson, 2008; Chang et al., 2008). These scenarios are obviously in conflict

with observation, and we do not consider them further. In mild cases, which will be our focus

in the remainder of this paper, collisions satisfy the “compatibility” criterion defined above: the

observable portion of the surface of last scattering is only minimally disturbed by the collision.

Thin-wall analysis (Aguirre and Johnson, 2008) and numerical simulations (Aguirre et al., 2009;

Chang et al., 2009) indicate that it is indeed possible to find situations where the effects of a

collision are compatible with our observed cosmology.

The disturbance caused by a collision is a pre-inflationary relic and thus is stretched by the

period of inflation inside the bubble. From the current bound on curvature (Komatsu et al.,

2011), we can infer that our past light cone encompasses less than one horizon volume at the onset

of inflation. This implies that the initial disturbances caused by a collision, which is smeared out

on the scale of the inflationary horizon after a few e-folds of inflation, has a wavelength today

that is larger than the current horizon size. Together with the planar symmetry of the collision
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crit2

Figure 3.2: A Poincare-disc representation of the surface of last scattering inside our parent
bubble, with one dimension suppressed. The future light cone of the collision at this time is
denoted by the dark red line, with the shaded region representing the portions of the surface of
last scattering that are to the future of the collision. Our past light cone at last scattering is
represented by the dashed circle. From the present bounds on curvature, the size of our past
light cone must be much smaller than one curvature radius. Zooming in on the portion of the
surface of last scattering that we have causal access to (inset), the universe is very close to flat,
and the region affected by the collision has approximate planar symmetry. The region affected
by the collision appears as a disc of angular radius θcrit on the CMB sky.
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at last-scattering (by convention along the y-z plane), this implies that we can Taylor-expand the

Newtonian potential (see Czech et al. (2010) for a translation between the Newtonian potential

and the originally postulated temperature modulation presented in Chang et al. (2009)) about

the causal boundary of the collision at x = xcrit as

Φcoll = Φ(a)
(
c̄0 + c̄1(x− xcrit) +O((x− xcrit)

2)
)

Θ(x− xcrit), (3.6)

where Φ(a) encodes the evolution of the potential with scale factor a and the c̄i are model-

dependent constants. 3

There are contributions to the observed temperature modulation from the Sachs-Wolfe effect,

the integrated Sachs-Wolfe effect, and a Doppler effect (coming from the induced bulk peculiar

velocity v of the fluid in the region affected by the collision):

δT

T
' Φcoll(als)

3
+ 2

∫ 1

als

da
dΦcoll

da
+
(
v · n̂ +O(v2)

)
, (3.7)

where als is the scale factor at last scattering, a = 1 today, and

v ∝ ∇Φcoll + a
d

da
∇Φcoll. (3.8)

To leading order in v, the temperature induced by the collision is linear in Φcoll and its deriva-

tives. Therefore, since x = xls cos θ (where xls is the comoving distance out to which we can see

on the surface of last scattering), the temperature fluctuations induced by a collision are gener-

ally of the form Eq. 3.4. Further, even if the Newtonian potential is continuous across x = xcrit,

the resulting temperature fluctuations need not be continuous across the causal boundary at

θcrit. This discontinuity arises from the ISW and Doppler contributions to the observed temper-

ature fluctuation. Effects that we have neglected, including the finite thickness of the surface

of last scattering and uncertainties about how the perturbations caused by a bubble collision

propagate through our bubble interior, are encapsulated by the higher order terms in Eq. 3.4.

These effects could smear out the causal boundary enclosing the collision on sub-degree scales.

These corrections could be incorporated into our analysis as theoretical understanding improves.

Given a specific model for the scalar fields making up the bubbles and driving eternal inflation,

the kinematics of a particular collision, and our position inside our bubble, it is in principle

3We are modeling the collision as a collection of super-modes truncated at the causal boundary, and our
treatment is therefore very similar to the so-called “tilted universe” scenario (Turner, 1991; Erickcek et al., 2008).
The important distinction in the case of bubble collisions is that the perturbation vanishes at the causal boundary
xcrit. Because the collision entered our past light cone only relatively recently, we are still comoving with respect
to the undisturbed FRW foliation, and the cancellation of the dipolar temperature modulation seen in Turner
(1991), Erickcek et al. (2008) and Zibin and Scott (2008) does not occur.
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Figure 3.3: On the left, we show a bubble collision template with {z0 = 5.0 × 10−5, zcrit =
−5.0 × 10−5, θcrit = 10.0◦, θ0 = 57.7◦, φ0 = 99.2◦}. On the right we add simulated background
fluctuations, smoothing, and instrumental noise.

possible to determine the free parameters in Eq. 3.4. Treating the colliding bubbles in the thin-

wall approximation, some measure of the strength of a collision can be specified in terms of

the vacuum energies in the bubbles, wall tensions, and kinematics as in Aguirre and Johnson

(2008). The kinematics will induce a probability distribution for the free parameters in Eq. 3.4.

However, an accurate treatment requires a calculation of the back-reaction of the collision on

the behaviour of the inflaton inside our bubble. Preliminary work in this direction has been

done (Chang et al., 2009; Aguirre et al., 2009; Easther et al., 2009; Giblin et al., 2010), providing

a handful of examples. However, a systematic investigation has not yet been performed. This is

distinct from the case where an ensemble of field theory models is considered, representing the

string theory landscape. In this case, the fundamental parameters governing the structure of

the colliding bubbles (wall tensions and vacuum energies) and the properties of the inner-bubble

cosmology (including the number of inflationary e-folds etc) are drawn from some probability

distribution. This again will induce a probability distribution for the free parameters in Eq. 3.4,

whose nature is presently poorly understood.

What would a bubble collision embedded in a CMB temperature map look like? In Fig. 3.3

we show a large-amplitude collision with and without background CMB fluctuations. In the

following sections, we apply the various stages of our analysis pipeline to this example to illustrate

the algorithm. We make extensive use of such simulations in calibrating our analysis pipeline,

and the details of their construction are presented in Sec. 3.5. Although there could conceivably

be many overlapping collisions, the predicted observational signatures of this scenario have yet

to be explored, and we focus on simulations of distinct individual bubble collisions. Again, as

theoretical understanding improves, our analysis could be extended to include the possibility of

overlapping collisions.

What would the detection, or absence, of a bubble collision tell us about the underlying

theory of eternal inflation? To examine what the answer to this question might be, let us make
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some further assumptions about the temperature modulations caused by a bubble collision.

First, assume that the potential induced by the collision (Eq. 3.6) is composed mostly of a single

long-wavelength mode of physical wavenumber k. Second, assume that the Sachs-Wolfe effect is

the dominant contribution to the observed temperature modulation. Under these assumptions,

the amplitude of an observed temperature modulation is:

z0 '
2

3

k

H0
Φ(als) (1− cos θcrit) , (3.9)

where als is the scale factor at last scattering. If the initial wavelength of the disturbance was of

order one inflationary Hubble length k ∼ HI (since any fine-structure in the collision would be

smeared within the first few e-folds of inflation), then Φ(als) = Φ(a = 0), and the physical size

of such a mode at last scattering is given by

k ' Ω
1/2
k H0. (3.10)

In this case, we have

z0 ' Φ(0)Ω
1/2
k (1− cos θcrit) . (3.11)

If a bubble collision is detected, and a similar set of assumptions is proven correct in a specific

model, the measured values of z0 and θcrit allow one to infer the value of Ωk. 4 In the absence

of a detected collision, Eq. 3.11 can be turned into a bound on a combination of Ω
1/2
k and Φ(0):

Ω
1/2
k Φ(0) < [z0/ (1− cos θcrit)]observational upper bound (3.12)

This analysis can be recognized as an example of the Grishchuk-Zel’dovich effect in an open

universe (Garcia-Bellido et al., 1995; Turner, 1991).

Determining the detailed properties of the theory underlying eternal inflation through the

observation of bubble collisions is likely to be a messy business. However, any model will predict

an expectation value for the number of observable bubble collisions N̄ , making this a very

useful phenomenological parameter. Any constraints on N̄ from data will also yield interesting

information about our parent vacuum through Eq. 3.1. The most naive application of such a

4The values of Ωk that one might be able to infer are conceivably below both the observational bound Ωk ≤
.0084 and the theoretical observational bound Ωk ≤ 10−5. For example, assuming z0 ∼ 10−5 and Φ(0) ∼ 1 (since
the collision involves a relatively large release of energy), if a collision were observed at large angular scale (where
cos θcrit ∼ 0), we can infer that Ωk ∼ 10−10. This implies that a collision is in principle observable even when
curvature is not. We thank Lam Hui for elucidating this point.
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constraint, where we have evidence that N̄ > 1 or N̄ < 1, would yield the inequalities

λH−2
F <

3H2
I

16πΩ
1/2
k

(no detected collisions), λH−2
F >

3H2
I

16πΩ
1/2
k

(collision detection), (3.13)

These bounds would be most useful if we detect Ωk and/or B-mode polarization (the amplitude

of which can be related to HI) in future data. In the most optimistic scenario 5, if primordial

B-mode polarization is detected by the Planck satellite, we can infer that HI ∼ 1011 − 1013

GeV. Further, if curvature is detected at the level Ωk ∼ 10−3, then in Eq. 3.13, λH−2
F would be

bounded from above or below by ∼ 1026 GeV2. The condition for eternal inflation is λH−4
F < 1.

Any application of Eq. 3.13 must be consistent with this inequality. For example, assuming a

Planckian false vacuum energy (HF ∼ 1019 GeV), the nucleation probability λH−4
F could be

bounded from above or below by ∼ 10−4, remaining consistent with the condition for eternal

inflation.

3.4 Summary of the analysis pipeline

Before providing a detailed description of our analysis pipeline, we motivate and summarize its

various components. Eternal inflation can arise from a wide range of inflationary potentials,

each producing a different expected number of detectable collisions on the CMB sky, N̄s. We

will therefore use N̄s as a continuous parameter that characterizes particular models of eternal

inflation. The standard cosmological model is given by the special case in which N̄s = 0. Our

primary goal is to determine, given the WMAP 7-year data, what constraints can be placed on

N̄s and whether models predicting N̄s > 0 should be be preferred over models predicting N̄s = 0.

The optimal approach to achieving this goal would be to construct the full posterior for

N̄s from Bayes’ theorem given full-resolution CMB data on the whole sky. Unfortunately, this

would require inverting the full-sky full-resolution CMB covariance matrix as well as integrating

the bubble-collision likelihood over a many-dimensional parameter space. These tasks are com-

putationally intractable. However, taking advantage of the fact that bubble collisions produce

discrete localized effects on the CMB sky, it is possible to approximate the full-sky Bayesian

analysis by a patch-wise analysis if the most promising candidate signatures can be identified

in advance. The implementation of such an approximation scheme requires two assumptions.

First, we assume that the likelihood of models predicting N̄s > 0 is peaked in the regions of the

5In models where a collision is expected to be in our past, there might be good reason to expect a correlation
between observed B-modes and the observation of a bubble collision (Aguirre et al., 2009). This is because
large-field models of inflation, which generically predict a larger value for the tensor to scalar ratio, are much
more robust in the presence of a bubble collision. In models of small-field inflation, a bubble collision can end
inflation everywhere in its future light cone, implying that collisions in such models are not compatible with our
observed cosmology.
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sky containing the candidate collisions, and that the integral over the likelihood can therefore

be estimated by concentrating on these regions, which make the largest contribution to the full

integral. Second, we assume that these regions are separated widely enough to be uncorrelated

with each other, so much smaller local covariance matrices can be used. These assumptions al-

low the results of a small number of localized (and therefore computationally-feasible) Bayesian

model selection tests to be combined into estimates of the required full-sky statistics. Put simply,

our algorithm implements a conservative approximation to the required numerical integral. A

complete treatment of the full-sky analysis and the assumptions on which it is formed can be

found in Appendix A.1. In addition, once a set of candidates have been identified, it is possible

to apply further tests of the data in parallel.

The full-sky approximation necessitates the development of an algorithm that identifies the

most promising regions of the CMB sky and then processes them individually. Upon segmenting

the full data set, it is important to avoid biasing oneself with a posteriori selection effects (Bennett

et al., 2011), and it is therefore critical to minimize human intervention in choosing what portions

of the sky to analyze. Thus our analysis pipeline is fully automated, tested and calibrated

on realistic simulations of the data, and frozen before being applied to the real data. The

final pipeline contains no algorithmic choices tunable via human intervention. As discussed in

Appendix A.1, missing a bubble collision candidate which makes a significant contribution to

the full integral leads to a conservative bias towards models predicting N̄s = 0. This alleviates

the worry that selection effects might lead to a spurious detection.

Our analysis pipeline consists of a candidate identification step, followed by two parallel

verification procedures:

• Blob detection: To begin, we attempt to locate the most promising candidate signals

using wavelets. Wavelet analysis is a compromise between working purely in position or

harmonic space, and therefore yields information both about the location and angular scale

of particular features in the temperature map. Specifically, we employ standard (Marinucci

et al., 2008; Pietrobon et al., 2006; Pietrobon et al., 2008; Baldi et al., 2006; Guilloux

et al., 2007) and Mexican (Scodeller et al., 2011) spherical needlets, two classes of wavelets

defined on the sphere. The statistics of the needlet representation of a purely Gaussian

CMB temperature map (expected in the absence of a bubble collision at large scales where

WMAP is cosmic-variance-dominated), combined with simulations of a bubble-free masked

CMB sky, can be used to quantify the significance of various features. A set of significance

thresholds are then defined to ensure a manageable number of “false detections” in the end-

to-end simulation of the WMAP experiment (see Sec. 3.5.1). Regions of the sky passing
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these thresholds are sewn into “blobs,” whose size and location is determined by the needlet

responses, and passed onto the next stages of the pipeline.

• Edge detection: Once a set of candidate signatures is found, we look for circular edges

across which the temperature is discontinuous. As discussed above, such causal edges

are expected to be a generic signature of bubble collisions. We use the Canny algo-

rithm (Canny, 1986), adding an adaptation of the Circular Hough Transform (CHT) (Kimme

et al., 1975), to focus our search on circular edges. The algorithm consists of identifying

the most likely centre for a noisy circular edge. The significance of this response is cali-

brated from a detailed analysis of bubble collision simulations including cosmic variance,

spatially-varying WMAP instrumental noise, and smoothing due to the instrumental beam.

We verify that this step produces no false detections in the WMAP end-to-end simulation.

• Bayesian parameter estimation and model selection: The regions highlighted by

the blob detection step can be used to construct an approximation to the full-sky posterior

probability distribution for N̄s using the methods outlined in Appendix A.1. We first

perform a pixel-based evaluation of the likelihood and Bayesian evidence in each blob for

bubble collision templates of the form given in Eq. 3.4, sampling the parameter space

using the nested sampler Multinest (Feroz et al., 2009). The likelihood analysis includes

cosmic variance, spatially varying WMAP instrumental noise, and the smoothing due to

the instrumental beam. Combining the evidences from each blob we obtain the posterior

probability distribution for N̄s, which is used to derive constraints on N̄s and perform

model selection to determine if a theory with N̄s 6= 0 is preferred over a theory with no

predicted collisions. The significance of a detection is again calibrated from an analysis of

simulated collisions and an end-to-end collision-free simulation of the experiment.

The most important output of our pipeline is the approximation to the full-sky posterior

probability distribution for N̄s. This allows us to derive marginalized constraints on N̄s, and

perform model selection between theories with N̄s = 0 and N̄s 6= 0. In addition, for each blob

identified by the first set of the pipeline, we obtain a set of marginalized posterior constraints on

the model parameters {z0, zcrit, θcrit, θ0, φ0}, a maximum needlet significance, CHT score, and a

local Bayesian evidence ratio with respect to the no-bubble-collision model.

3.5 Simulations

Our analysis pipeline is general, but each step must be calibrated using simulations of the

particular data-set under consideration, in this case the WMAP 7-year data release (Jarosik
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et al., 2011). WMAP has measured the intensity and polarization of the microwave sky in

five frequency bands. The resolution of the instrument in each band is limited by the detectors’

beams, and is highest at 0.22◦ in the 94 GHz W band. We perform our analysis on the foreground-

subtracted W-band WMAP temperature map, as this combines the highest resolution full-sky

data currently available with the least foreground contamination. To minimize the effects of the

residual foregrounds we cut the sky with the conservative KQ75 mask, leaving 70.6% of the sky

unmasked.

We carry out extensive simulations to quantify the thresholds at which areas of the sky

are passed from one step to another. To find the best approximation to the full-sky Bayesian

analysis, we process as much of the sky as is computationally feasible.

To determine the response of our pipeline to bubble collisions over the range of possible

parameters, we generate simulations containing a variety of bubble collisions plus CMB, realistic

noise and Gaussian beam smoothing. However, we also wish to ensure that we have a method to

guard against systematic effects (e.g., foreground residuals and any map-making artifacts that

may be present) that we do not have capability to simulate. These effects might lead to false

detections in the “blob detection” stage, or critically, the edge detection and Bayesian analysis

stages. It is impossible to claim a detection without first ensuring that there are no such false

detections due to systematics.

3.5.1 WMAP end-to-end simulation

A realistic simulation of a WMAP-quality data-set that does not contain a bubble collision is an

important tool for calibrating and quantifying the expected false detection rate of our analysis

pipeline when applied to data which may include systematics (such as foreground residuals) that

are not captured in our simulations or likelihood function. For this purpose we use a complete

end-to-end simulation of the WMAP experiment provided by the WMAP Science Team 6. The

temperature maps in this simulation are produced from a simulated time-ordered data stream,

which is processed using the same algorithm as the actual data. The data for each frequency

band is obtained separately from simulated sources including diffuse Galactic foregrounds, CMB

fluctuations, realistic noise, smearing from finite integration time, finite beam size, and other

instrumental effects. In our analysis, we utilize the foreground-reduced W-band simulation.

6http://lambda.gsfc.nasa.gov/product/map/dr4/sim_maps_info.cfm
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3.5.2 Simulated bubble collisions

The temperature fluctuations observed in the CMB, including the effects of a bubble collision

(originally found in Gordon et al. (2005) and Chang et al. (2009)), can be written as

δT (n̂) = [T ′0(1 + f(n̂))(1 + δ(n̂))− T0]smoothed + δTnoise(n̂) , (3.14)

where n̂ = {θ, φ} is the position on the sky7, T0 is the average temperature of the map including

the modulation, T ′0 is the average temperature without the modulation, δTnoise is the contribution

from instrumental noise, f(n̂) and δ(n̂) are defined as in Eq. 3.3. The quantities in the brackets

are smoothed with a Gaussian beam of 0.22◦ (approximating the beam size of the WMAP

experiment in the W band). We use the WMAP best-fit 7-year power spectrum (Larson et al.,

2011) in the multipole range 2 ≤ ` ≤ 1024 to generate fluctuation maps δTsyn(n̂) = T ′0δ(n̂)

at the full WMAP resolution of Nside = 512 (with 3,145,728 pixels). The noise term δTnoise

is generated from WMAP 7-year noise variances at the same resolution. Since the templates

we consider add a relatively small temperature excess/deficit in one location, the features do

not cause the power spectrum to deviate from that measured by WMAP (Chang et al., 2009).

Additionally, we can replace T0 ≈ T ′0, which gives

δT (n̂) = [(1 + f(n̂))(T0 + δTsyn(n̂))− T0]smoothed + δTnoise(n̂). (3.15)

We consider collisions with θcrit = 5◦, 10◦, 25◦ and choose centers in a high-noise region

(θ0 = 56.6◦, φ0 = 193.0◦) and a low-noise region (θ0 = 57.7◦, φ0 = 99.2◦) of the sky that remain

significantly outside of the main body of the WMAP KQ75 7-year mask. The regions of the sky

affected by 5◦ and 10◦ collisions are over-plotted in Fig. 3.4 on a masked map of the instrumental

noise variance. For each θcrit and location, we generate 35 simulated collisions with parameter

values logarithmically spaced in the ranges 10−6 ≤ z0 ≤ 10−4 and −10−4 ≤ zcrit ≤ −10−6.

The response of our pipeline depends only on the absolute value of z0 and zcrit, so the choice of

sign for z0 and zcrit is arbitrary. We repeat this for three realizations of the background CMB

fluctuations, yielding a total of 210 simulated sky maps for each of the three collision sizes.

3.6 Analysis tools

We now describe in detail the analysis tools which make up our pipeline and how they are

calibrated with simulations before being applied to the data. Readers wishing to skip these

7These angular positions can be expressed in terms of Galactic coordinates through longitude l = φ and
latitude b = 90◦ − θ.
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100 uK28

Figure 3.4: The two locations chosen for our simulated bubble collisions are over-plotted on the
WMAP 7-year noise variances with the KQ75 7-year mask applied. The regions encompassed by
the 5◦ and 10◦ simulated collisions are shaded black and grey respectively. Bubbles are centered
in an unmasked high-noise {θ0 = 56.6◦, φ0 = 193.0◦} (left) and low-noise {θ0 = 57.7◦, φ0 =
99.2◦} region (right).

details may wish to study Figs. 3.11 and 3.17 and turn to Sec. 3.6.4 for a summary of the outputs

of the pipeline at each stage, and the conditions under which a detection can be claimed.

3.6.1 Needlets

Wavelet analysis is a powerful tool for identifying features localized on the sky, the type of signal

expected for bubble collisions. There exist families of wavelets that are defined on the sphere

known as standard (Marinucci et al., 2008; Pietrobon et al., 2006; Pietrobon et al., 2008; Baldi

et al., 2006; Guilloux et al., 2007) and Mexican (Scodeller et al., 2011) spherical needlets. These

functions form what is known as a “tight frame,” allowing for a well-defined forward and reverse

needlet transform. As in other forms of wavelet analysis, decomposing the temperature map

into a sum over such functions yields information both about the location and angular scale of

specific features. For a purely Gaussian temperature field, the statistical properties of the needlet

transform can be straightforwardly related to the power spectrum, allowing a quantification of

the significance of a possible detection. In addition, the spatial localization properties of the

standard and Mexican needlets make it possible to avoid many of the problems associated with

working on a cut sky. In this section we outline the properties of needlet transforms and analyze

their utility in searching for bubble collisions.
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Definition of the spherical needlet transform

The needlet transform is defined as:

T (n̂) =
∑

j,k

βjkψjk(n̂), (3.16)

where n̂ denotes a direction {θ, φ} on the sky, βjk are constant needlet coefficients, and ψjk(n̂)

are the needlet functions. The members of this family of functions are labeled by the index k

of the pixel at which they are centered, and their “frequency” j, which is related to the spatial

extent of the needlet profile in real space. The sum in the needlet transform is over all pixels

k, and all frequencies j = 0, 1, 2, . . . ,∞. For fixed j, there is one needlet coefficient βjk for each

pixel k, allowing us to represent the needlet coefficients at fixed j as a map on the pixelated sky.

The needlet functions are defined in terms of spherical harmonics Y`m(n̂) as

ψjk(n̂) =
√
λjk

∑

`

b (`, B, j)
∑̀

m=−`

Y ∗`m(n̂)Y`m(n̂k). (3.17)

Here, λjk are the cubature weights, which are related to the area of each pixel. In the equal-

area HEALPix pixelization (Górski et al., 2005) we employ, all cubature weights are equal to

λjk = 4π/Npix, where Npix is the number of pixels, and we absorb this constant into the needlet

coefficients βjk. The function b(`, B, j) acts as a filter in harmonic space, where B is a constant

bandwidth parameter. It is chosen such that the family of functions ψjk(n̂) form a tight frame

(see e.g. Marinucci et al. (2008)), which guarantees the existence of an inverse needlet transform

given by

βjk =

∫
T (n̂)ψjk(n̂)dΩ. (3.18)

There are a number of possible choices for the function b(`, B, j), which distinguish the

standard and Mexican needlets. A description of the explicit form of the function b(`, B, j) can

be found for standard needlets in Marinucci et al. (2008) and Mexican needlets in Scodeller et al.

(2011). We plot b as a function of the multipole moments ` in Fig. 3.5. For standard needlets,

b only has support for values of ` between Bj−1 < ` < Bj+1. The bandwidth parameter B

controls the width of each window function in harmonic space. Mexican needlets have support

over all ` at each frequency j, and again have a bandwidth parameter B which controls the

localization properties of the functions in harmonic space.

In Fig. 3.6 we plot the wavelet functions in pixel space. As is to be expected, increasing the

width of the function b(`, B, j) in harmonic space corresponds to improved localization in pixel

space. In the limit of large j, there is an extremely small overlap of the needlet functions at
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Figure 3.5: The filter function b(`, B, j) for standard (left) and Mexican (right) needlets with
B = 2.5 for j = 0, 1, 2, 3 (solid, dashed, dot-dashed, dotted).
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Figure 3.6: Standard needlets in pixel space. On the left, we show standard needlets ψjk with
B = 2.5 for j = 1, 2, 3 (dot-dashed, dashed, solid) at fixed k as a function of the polar angle
θ. On the right, we show standard needlets ψjk for fixed j = 3 at three pixels k (dashed, solid,
dot-dashed) as a function of the polar angle θ (note: since we are projecting onto θ, the needlets
appear asymmetric).

nearby pixels. The compact support of b(`, B, j) in harmonic space for standard needlets leads

to slightly poorer localization in pixel space than is enjoyed by the Mexican needlets.

If we decompose the temperature map into spherical harmonics:

T (n̂) =
∑

`,m

a`mY`m(n̂), (3.19)

then Eq. 3.18, together with the inverse transform

a`m =

∫
T (n̂)Y ∗`mdΩ (3.20)

leads to:

βjk =
√
λjk

∑

`

b (`, B, j)
∑̀

m=−`

a`mY`m(n̂k), (3.21)

where a`m are the spherical harmonic coefficients. This formula allows us to transform directly

from the a`ms to the spherical needlet coefficients βjk. In our analysis, the needlet transforms
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Figure 3.7: The spherical harmonic transform (connected dots) of a θcrit = 5◦ (left) and θcrit =
25◦ (right) bare collision template centered on the north pole on top of the filter function b(`, B, j)
for standard needlets with B = 2.5 for j = 0, 1, 2, 3 (solid, dashed, dot-dashed, dotted). The
overlap of the filter function b(`, B, j) with the spherical harmonic transform of the bubble
template (see Eq. 3.21) determines for which value of j the needlet transform yields the largest
signal. In these examples, the 5◦ collision has the largest needlet response at j = 3 and the 25◦

collision at j = 2. The needlet response as a function of angle for the 25◦ collision is plotted in
Fig. 3.8.

are accelerated by generating the a`ms at full WMAP resolution (Nside = 512) but limiting the

reconstruction multipoles to 2 ≤ ` ≤ 256, and needlet positions k to the pixels at Nside = 128.

This retains the resolution required to reconstruct features from half-sky to half-degree scales,

encompassing the range of all detectable collisions.

Needlet response to the bubble collision templates

We now quantify the sensitivity of the needlet transform to the presence of a collision. In the

absence of the background Gaussian fluctuations, we perform the needlet transform on a set of

bare collision templates. As an illustration, in Fig. 3.7 we plot the spherical harmonic coefficients

as a function of ` (all coefficients for m 6= 0 vanish by symmetry if we center the template on

the north pole) for 25◦ and 5◦ collision templates, overlaid on top of the rescaled filter function

b(`, B, j) for spherical needlets. The spherical harmonic coefficients for the collision templates

peak at a value of ` related to the angular scale of the causal boundary. Therefore, the needlet

coefficients are largest at a frequency j that is directly related to the angular scale of the collision.

This can be seen in Fig. 3.7, where the 5◦ collision has a maximum response at j = 3 and the

25◦ collision has a maximum response at j = 2.

In Fig. 3.8, we plot the needlet coefficients for the 25◦ template at a variety of polar angles,

for 0 ≤ j ≤ 3. The needlet coefficients are largest in the center of the region affected by the

collision (here, the template is centered on θ = 0), and at a frequency j correlated with the

angular scale of the collision (j = 2). As expected, the needlet response is sensitive to both the

location and angular scale of the collision.

By studying the needlet response to a variety of bare collision templates given by Eq. 3.4, we
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Figure 3.8: B = 2.5 for standard needlets and a 25◦ collision. j = 0 (circles), j = 1 (squares),
j = 2 (diamonds), and j = 3 (triangles).

can find optimal values of the bandwidth parameter B for each needlet type. Larger-bandwidth

needlets produce stronger signals, but also respond to a greater range of bubble sizes. We have

found that the values B = 1.8 and B = 2.5 for the standard and B = 1.4 for the Mexican

needlets are a good compromise between signal strength and angular localization of response.

In our analysis, we use this suite of three needlet transforms, ensuring that we are sensitive to

temperature modulations with a variety of profiles, and allowing us to cross-check any candidate

signals.

As an important step in our analysis pipeline, we build lookup tables containing the possible

range of bubble collision scales, θcrit,min ≤ θcrit ≤ θcrit,max, to which each needlet type and

frequency is sensitive. We first generate a set of 100 templates at each integer θcrit between 1◦

and 89◦ by randomly sampling zcrit between −5 × 10−5 ≤ zcrit ≤ 5 × 10−5 with z0 = 5 × 10−5

for zcrit > 0, and z0 = zcrit + 5× 10−5 for zcrit < 0. This creates a set of templates with uniform

total amplitude (i.e., constant f(θ, φ)−f(θcrit, φ)) but a variety of profiles at each angular scale.

Next, we calculate the needlet coefficients for each of the three members of our needlet suite,

and record the frequency generating the maximum central needlet response for each template.

The range in θcrit recorded at each frequency is used to generate the lookup tables in Table 3.1.

Needlet coefficients on a cut sky

The CMB is completely dominated by foreground emission in the region of the Galactic plane,

and is also affected by bright point-sources. These issues are typically handled by applying

a mask which covers the Galactic plane and known point-sources. The needlet transform can

be applied directly on the masked temperature maps, and because the needlet functions are

localized in pixel space, needlet coefficients far from the mask for sufficiently high frequency

j are not significantly affected. These high-frequency needlets are mainly composed of high-`

spherical harmonics, and so cut-sky a`ms can safely be used to calculate the needlet coefficients

through Eq. 3.21. Unfortunately, the low-frequency needlets are quite sensitive to the presence
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j θcrit,min θcrit,max

0 60 ◦ 90 ◦

1 33 ◦ 71 ◦

2 12 ◦ 32 ◦

3 5 ◦ 14 ◦

4 2 ◦ 5 ◦

5 1 ◦ 2 ◦

j θcrit,min θcrit,max

1 56 ◦ 90 ◦

2 28 ◦ 64 ◦

3 17 ◦ 38 ◦

4 10 ◦ 21 ◦

5 6 ◦ 12 ◦

6 3 ◦ 7 ◦

7 2 ◦ 4 ◦

8 1 ◦ 2 ◦

j θcrit,min θcrit,max

0 86 ◦ 90 ◦

1 78 ◦ 90 ◦

2 55 ◦ 90 ◦

3 36 ◦ 71 ◦

4 27 ◦ 48 ◦

5 19 ◦ 37 ◦

6 14 ◦ 27 ◦

7 10 ◦ 20 ◦

8 8 ◦ 16 ◦

9 5 ◦ 12 ◦

10 4 ◦ 8 ◦

11 3 ◦ 6 ◦

12 2 ◦ 4 ◦

13 1 ◦ 2 ◦

Table 3.1: Angular scale lookup tables for standard needlets with B = 2.5 (left), standard
needlets with B = 1.8 (center), and Mexican needlets with B = 1.4 (right). For a needlet
frequency j, the needlet transform is sensitive to bubble collisions on scales θcrit,min ≤ θcrit ≤
θcrit,max. No results are shown for the standard needlets with B = 1.8, j = 0 as they have no
support over the range of angular scales considered.

of the mask. To partially mitigate this sensitivity, we calculate the optimal unbiased maximum-

likelihood estimators of the a`ms (de Oliveira-Costa and Tegmark, 2006) at low `.

Such maximum-likelihood estimators are computationally very expensive, and we must bal-

ance accuracy against limited computational resources. Another minor complication arises from

the smoothing that is necessary to band-limit the data when performing the maximum-likelihood

reconstruction algorithm of de Oliveira-Costa and Tegmark (2006): information leaks from in-

side the mask. Comparing the reconstruction on masked and unmasked simulated temperature

maps using 10◦-FWHM Gaussian smoothing, we have determined that a reasonably small bias

is obtained when maximum-likelihood a`ms are used for ` < 10.

This set of hybrid a`ms – maximum-likelihood reconstructed a`ms for ` ≤ 10 and cut-sky

a`ms for ` > 10 – is used in Eq. 3.21 to calculate the needlet coefficients in the analysis that

follows.

Statistical properties of needlet coefficients

For a Gaussian CMB without sky cuts, the statistical properties of the spherical harmonic

coefficients (Marinucci et al., 2008) are

〈a`m〉 = 0, 〈|a`m|2〉 = C`. (3.22)
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These are related to the statistical properties of the βjk in a straightforward way by

〈βjk〉 = 0, 〈β2
jk〉 =

∑

`

b (`, B, j)
2`+ 1

4π
C`, (3.23)

which are identical at each pixel k. Thus, in a full-sky analysis, comparison with the Gaussian

variance yields a measure of how likely it is to find a particular needlet coefficient in a purely

Gaussian realization of the CMB sky.

In the presence of foregrounds, however, it is necessary to work on a cut sky, which introduces

a j- and k-dependent bias. Following Pietrobon et al. (2008), we determine the significance of a

needlet coefficient on the cut sky by 8

Sjk =
|βjk − 〈βjk〉gauss,cut|√

〈β2
jk〉gauss,cut

, (3.25)

where the average, 〈βjk〉gauss,cut, and variance, 〈β2
jk〉gauss,cut, are calculated at each pixel from

the needlet coefficients of 3000 collision-free Gaussian CMB realisations with the WMAP 7-

year KQ75 sky cut applied. Simulating only cosmic variance is sufficient here because the

measurements made by WMAP are cosmic-variance-limited on the scales of interest, θcrit & 5◦.

Maps of the needlet variances obtained from simulations are shown in Fig. 3.9 for an example

with low (top) and high needlet (bottom) frequency. On the left are the needlet variances cal-

culated without a mask, which agree at the 5% level with the expected variances from Eq. 3.23.

On the right are the masked needlet variances, which are clearly biased within a certain distance

from the mask in both cases. Variances in the low-frequency example are affected predomi-

nantly by the Galactic cut. Variances in the high-frequency example are affected in a much

smaller region of the Galactic cut (reflecting the increased spatial localization of needlets at high

frequencies), but are much more significantly affected by the point source masks.

To illustrate the expected response to a bubble collision, in Fig. 3.10 we show the temper-

ature map of our illustrative example of a simulated bubble collision on the cut sky, and the

significances of its needlet coefficients calculated from Eq. 3.25 at j = 3 using standard needlets

with B = 2.5. The location of the collision is clearly highlighted in the map of needlet coeffi-

cients. The significance of the needlet coefficients in pixels in the center of the collision form a

global maximum on the entire map.

8One can also define composite significances, involving needlet coefficients at multiple frequencies. An example
is

Sjj′ =
|βjkβj′k − 〈βjkβj′k〉|√

〈(βjkβj′k)2〉
. (3.24)

We have evaluated this statistic on a variety of collision templates modulating Gaussian realizations of the
background CMB fluctuations, and found that it returns about half the significance given by Eq. 3.25.
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Figure 3.9: Needlet-coefficient variance maps for standard needlets with B = 2.5, j = 2 (top
row) and Mexican needlets with B = 1.4, j = 11, generated using an ensemble of 3000 Gaussian
CMB realizations. The map-averaged variances of the full-sky maps (left column) agree well with
expectations from theory (Eq. 3.23 predicts 774 µK2 and 150 µK2 respectively), as do regions of
sky sufficiently distant from the 7-year KQ75 mask (right column). The low-frequency needlets
are affected predominantly by the Galactic cut, whereas the high-frequency needlets are affected
by point-source masking.

In order to identify a set of needlet coefficients with a particular feature, we sew regions with

5 or more pixels whose needlet coefficients exceed a frequency-dependent threshold into “blobs”

(we discuss in more detail below how these thresholds are set). The core of each blob contains all

adjacent pixels that pass the significance threshold. This core is then extended by first finding

the average position n̂0 of the pixels in a blob and modeling it as a disc of radius ∆θ/2 (where ∆θ

is the maximum separation between any two pixels in the blob) centred on n̂0. The blob is then

extended to a radius of 1.1× (θcrit,max + ∆θ/2), where θcrit,max is found from Table 3.1 (which is

dependent upon the needlet type and frequency at which a feature is found) to ensure we include

all related pixels. All pixels not contained in a blob are masked, and this new temperature map

is passed to subsequent steps in the analysis pipeline. Eliminating irrelevant pixels allows us to

drastically reduce the computational effort needed in the subsequent analysis.

Analysis of the WMAP end-to-end simulation

As there are many independent needlet coefficients over the sky, it is inevitable that highly

significant features will be detected in even a purely Gaussian CMB temperature map. In

addition, residual foregrounds and instrumental artifacts may give rise to features which are

mis-classified as candidate bubble collisions by the pipeline. To understand how these effects
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Figure 3.10: The temperature (top) and needlet coefficient significance (bottom) maps for a
simulated bubble collision with z0 = 5 × 10−5, zcrit = −5 × 10−5, θcrit = 10◦ on the CMB sky
with the WMAP 7-year KQ75 mask applied. We show the map of needlet coefficients which
gives the largest needlet response, in this case j = 3 for standard needlets with B = 2.5. The
right-hand panels provide close-ups of the collision region.

might contribute to the needlet significances, we ran the suite of needlet transforms on the end-

to-end simulation of the WMAP experiment (described in Section 3.5) with the 7-year KQ75

mask applied. As an illustration of our results, in Table 3.2 we give the number of blobs of varying

significance found in the masked end-to-end simulation using standard needlets with B = 2.5.

At increasingly high frequency, for which there are more independent needlet coefficients, more

and more blobs are found that pass relatively large significance thresholds.

We use the results of Table 3.2 (and similar tables for other members of the needlet suite)

to define a set of needlet frequency-dependent significance thresholds that allow a manageable

number of false-positives, while retaining sensitivity to a fairly large range of collision template

parameters. The significance thresholds we use in our analysis are shown in Table 3.3. There are

a total of 17 blobs in the masked end-to-end simulation that pass these thresholds. Comparing

their locations on the sky, we can associate these blobs with 13 features (if a feature is picked

up by multiple needlet types or frequencies, it can have multiple blobs associated with it). For

three of these features, the set of pixels that pass the needlet threshold intersect the Galactic

cut. We associate these with a response to the mask, and do not consider them further. For the
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j S = 3 3.25 3.5 3.75 4
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 10 4 2 1 0
4 23 10 4 0 0

Table 3.2: The number of blobs found in the masked WMAP end-to-end simulation above
significances ranging from 3 ≤ S ≤ 4 for standard needlets with B = 2.5.

j Smin Nblobs

0 3 0
1 3 0
2 3.5 0
3 3.5 1
4 3.75 0

j Smin Nblobs

1 3 0
2 3 0
3 3.25 0
4 3.25 1
5 3.25 3
6 3.5 1
7 3.5 3

j Smin Nblobs

0 3 0
1 3 0
2 3 0
3 3 0
4 3 0
5 3 0
6 3.5 0
7 3.5 0
8 3.5 0
9 3.5 0
10 3.5 1
11 3.5 1
12 3.75 1

Table 3.3: Sensitivity thresholds Smin and the number of significant blobs detected in the end-to-
end simulations Nblobs for standard needlets with B = 2.5 (left), standard needlets with B = 1.8
(center), and Mexican needlets with B = 1.4 (right). Only blobs that do not intersect the
galactic cut are reported. No results are shown for the standard needlets with B = 1.8, j = 0 as
they have no support over the range of angular scales considered.

other ten features, the needlet type and frequency which yielded the maximum significance is

recorded in Table 3.4.

Analysis of bubble collision simulations

To assess how robustly the needlet transform can pick out a collision in the temperature map,

we have performed an analysis of the simulated collisions described in Section 3.5. If the later

steps of the analysis are to have a chance at detecting a simulated collision, it must be contained

within the set of pixels defined by the blob. To determine if the needlet analysis has detected a

bubble collision, we therefore require that a blob exists which fully contains the region affected

by the collision, and that the true center of the collision lies within the set of pixels passing the

significance threshold.

The results of this analysis for the 5◦ and 10◦ collisions are shown in Fig. 3.11. We define

the “exclusion region” of these plots as the part of parameter space for which all six realiza-
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feature blob B j S
1 1 2.5 3 3.83
1 2 1.8 5 3.55
2 1 1.8 4 3.99
3 1 1.8 5 3.28
4 1 1.8 5 3.33
4 2 1.4 10 3.77
5 1 1.8 6 3.96
6 1 1.8 7 4.13
7 1 1.8 7 3.97
8 1 1.8 7 4.34
9 1 1.4 11 3.71
10 1 1.4 12 4.14

Table 3.4: Blobs found by the needlet transform in the WMAP end-to-end simulations with the
7-year KQ75 mask.

tions/locations yield a detection. If there were a bubble collision in the WMAP 7-year data with

these parameters, it would be detected with high significance regardless of its location on the

sky (as long as the collision was not significantly masked). The “sensitivity region” is defined as

the part of parameter space for which any of the six realizations/locations yields a detection. A

bubble collision in this range of parameter space would be detected only for a favorable location

or realization of the background fluctuations. The exclusion and sensitivity regions for the 25◦

collisions are identical to those for the 10◦ collisions.

Looking at the simulations in detail, there are a few general trends. First, for the needlets

to pick out a collision, it is sufficient to have either a relatively large central amplitude z0 or a

relatively large temperature discontinuity zcrit at the causal edge. This is clear from the shape

of the exclusion region in Fig. 3.11. From the size of the sensitivity region in this plot, one

can also see that the amount of instrumental noise and particular realization of the background

fluctuations can greatly affect the significance of the needlet coefficients in the vicinity of a

collision. Many more collisions were detected in the low-noise region than the high noise region

of the sky. For collisions in the exclusion region, there is a significant needlet response for all

three needlet types over a range of frequencies, with an average significance exceeding S > 5.

Collisions in the sensitivity region are typically detected by only one needlet type and frequency,

with an average significance near S ' 4. As our ability to detect 5◦, 10◦, and 25◦ collisions is

nearly the same, we conclude that these results are fairly representative of our detection limits

over all angular scales & 5◦.

These general trends can be contrasted with the response to features found in the end-to-

end simulations. Here, blobs are typically detected with a single needlet type and are near the
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Figure 3.11: Exclusion (black) and sensitivity (grey) regions for the needlet step of the analysis
pipeline applied to a set of 5◦ (left) and 10◦ (right) simulated bubble collisions. If all realizations
at the high and low noise locations yield a detection, we include the collision in the exclusion
region; such collisions would certainly be detected as long as they were not significantly masked.
If a detection is made in any realization/location, we include the collision in the sensitivity
region; such collisions could be found if they were in a favorable location of the sky (i.e., low
noise, or a region with a specific realization of background CMB fluctuations).

significance threshold (not surprisingly, as the threshold was chosen to have this property). A

feature detected in the data by multiple needlet types and/or frequencies at a significance of

S ≥ 4 would be a good bubble collision candidate. However, we stress that many different

underlying features could give rise to such a signal. The following steps in the analysis pipeline,

which we now describe, are designed to verify if these candidates are in fact bubble collisions.

3.6.2 Edge detection

The first of the two parallel verification steps of the pipeline tests whether features highlighted

by the blob detection stage have circular temperature discontinuities. The unambiguous de-

tection of a circular temperature discontinuity would strongly suggest that a particular feature

highlighted by the needlets is in fact a bubble collision. We employ the Canny edge detec-

tion algorithm (Canny, 1986), whereby the gradient of an image is generated and thinned into

single-pixel proto-edges, the best of which are stitched together into “true” edges. We also use

an adaptation of the Circular Hough Transform (CHT) algorithm (Kimme et al., 1975), which

assigns a “score” dependent on how many edge pixels lie on circles of varying centers and radii.

In this section, we describe our edge detection algorithm, and study its performance on an

end-to-end simulation of the experiment, as well as on simulated bubble collisions.
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The Canny edge detection algorithm

The Canny edge detector is the standard edge detection algorithm in image-processing software,

and has recently been used to search for cosmic strings (Danos and Brandenberger, 2010; Amsel

et al., 2008). Designed as the optimal algorithm for localized, duplicate-free detection of edges

within a noisy image, it uses three steps – smoothed gradient generation, non-maximal suppres-

sion and hysteresis thresholding – to extract contiguous edge sections. In Fig. 3.12, we depict

each of these three steps as applied to a temperature map containing a circular discontinuity;

each of these steps are in turn described below.

1. Smoothed gradient generation: The gradient of a Cartesian image is traditionally

generated by convolving the image with two small symmetric filters, each determining

one orthogonal component of the gradient. A number of simple filters – typically 3 × 3

pixels – perform the job adequately, but the optimally adaptable filters are the first partial

derivatives of the two-dimensional Gaussian (Canny, 1986). Using these filters is equivalent

to first convolving the image with a small Gaussian filter (and thus smoothing out the

effects of small-scale noise on the gradient calculation, an important step given the small

number of pixels involved in the calculation) and then finding its gradient components.

Unfortunately it is impossible to construct symmetric pixel-based gradient filters that cover

the whole sphere. We therefore carry out both the Gaussian smoothing and gradient gener-

ation steps in harmonic space, making use of HEALPix’s in-built alm2map der subroutine

to calculate the magnitude and direction of the gradient at each pixel. We smooth with a

Gaussian filter of FWHM 0.22◦ – approximately two pixels’ width at the resolution of our

input maps – to minimize features due to pixel noise while retaining longer edges.

The gradient maps are generated before masking to reduce “ringing” from the sharp sky

cut back into the map. The smoothing step ensures that any leakage from masked features

is restricted to areas a few pixels within the sky cut, and affects only areas a few pixels

outside of the cut. Nevertheless, any features found close to the mask should be carefully

examined to check if they are generated from within the mask.

2. Non-maximal suppression: The second step of the Canny algorithm reduces the smoothed

gradients produced by the first step into local maxima. At this stage, all pixels are as-

sumed to belong to a local edge, whose direction is defined to be perpendicular to the local

gradient direction. Taking each pixel at a time, the two direct neighbors which lie closest

to the local edge are found. The gradient magnitudes of the three pixels are compared,

and the central pixel’s gradient magnitude is set to zero unless it is the largest of the

89



three. Processing each pixel in turn reduces the gradient magnitude map to only the local

maxima (see the central panels of Fig. 3.12).

As an example, consider the simplest case of crossing a sharp discontinuity along a per-

pendicular path. The gradient direction is constant at each pixel, whereas the smoothed

gradient magnitudes increase until the edge is crossed, when they start to decrease. A non-

maximal suppression algorithm tracks along the path setting all of the gradient magnitudes

to zero apart from the pixel on (or closest to) the edge.

3. Hysteresis thresholding: At this stage of the Canny algorithm, we have gradient mag-

nitudes and directions for a set of local maxima of varying amplitude, some corresponding

to true edges (which may have been disrupted by noise) and others to runs of noisy pixels

or to more slowly-varying boundaries of CMB patches. To filter out true edges from the

noise, and stitch together any edges that have been split, the final step of the algorithm

takes advantage of the fact that, unlike randomly-oriented noise, true edges conserve their

gradient magnitude and direction (to an extent affected by the shape of the edge, the

pixelization scheme, and the noise level) over their path.

Hysteresis thresholding involves first setting an upper threshold for the gradient magnitude:

any pixels surpassing this threshold are considered to be part of true edges, and a new

“true edge” map is created with these pixels’ positions marked. A second, lower threshold

is then set. Hysteresis thresholding then proceeds as follows:

(a) The map is scanned until a true edge pixel is found.

(b) The next potential edge pixel is defined to be the direct neighbor closest to 90◦

clockwise from the local gradient direction. The gradient direction of this pixel is

compared to the current pixel’s. To do so, the local phase angles to the current

pixel’s nearest neighbors are found, and used to define the neighbor closest to the

current gradient direction. The neighbors adjacent to this pixel are then determined.

The gradient direction at the next potential edge pixel is required to lie between the

phase angles of these neighbors. This rather loose requirement allows the algorithm

to step along pixelated curved edges.

i. If the two pixels’ gradient directions match within the tolerance,

A. If the neighbor’s gradient magnitude passes the low threshold but not the

high, it is considered to be part of a potential true edge. Its position is

marked in a history array; then the algorithm “steps onto” this pixel and the

process is repeated from step (b) until one of the other conditions is met.
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B. If the neighbor’s gradient magnitude passes the high threshold, all pixels

found on the way from the source pixel are confirmed as a true edge. Their

positions are marked on the true edge map, and the algorithm returns to step

(a).

C. If the neighbor’s gradient magnitude fails both thresholds, the edge is consid-

ered to be false: the history of potential edge pixels found on the way from

the source pixel is erased, and the algorithm returns to step (a).

ii. If the two pixels’ gradient directions do not match within the required tolerance,

A. If the neighbor’s gradient magnitude passes the high threshold or the neighbor

is already marked in the history array, all pixels found on the way from the

source pixel are confirmed as a true edge. Their positions are marked on the

true edge map, and the algorithm returns to step (a). This ensures simple

branched and looped edges can be reconstructed.

B. If the neighbor’s magnitude does not pass the high threshold and the pixel

is not already marked in the history array, the edge is considered to be false,

the history of potential edge pixels found on the way from the source pixel is

erased, and the algorithm returns to step (a).

The entire process is then repeated, choosing the neighbor closest to 90◦ counter-clockwise

to the local gradient direction in step (b).

The end product of the Canny algorithm is a Boolean map of stitched true edges (see right-hand

panel of Fig. 3.12). To reduce computation time, the pipeline from hysteresis thresholding on-

wards is restricted to the blobs produced by extending the regions passing the needlet significance

test to ensure any discontinuity is fully contained.

Care must be taken when setting the thresholds used in the hysteresis thresholding step. If

either threshold is set too high, very few edges are confirmed. If the low threshold is set too

low, a huge amount of potential edges are considered, and the algorithm runs extremely slowly.

As the edges we could potentially find must be comparable in amplitude to the CMB signal and

detector noise (as they have not yet been discovered by eye) and have been smoothed by the

WMAP beam, we set low thresholds to err on the side of caution. Low and high thresholds

of 30% and 40% of the maximum gradient magnitude found in each search region are found

empirically to confirm edges generated in simulations in feasible computation timescales. This

means that the gradients associated with the strongest CMB features – typically ∼ 1◦ in scale

– are classified as edges, as is shown in Fig. 3.12.
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Figure 3.12: An illustration of the Canny algorithm for edge detection. The input temperature
map contains a circular discontinuity, which can be seen in a map of the gradient magnitude as
a local maximum. Non-maximal suppression selects for local maxima in the gradient map. The
hysteresis thresholding step finds stitched edges by comparing the local direction of the gradient
at adjacent pixels.

Circular Hough Transform

The maps of stitched candidate edges found using the Canny algorithm are processed using

the Circular Hough Transform to search for the presence of circular edges. The basic idea, as

shown in Fig. 3.13, is to count the number of intersections between circular arcs of varying radii

centered on each of the candidate edge pixels and oriented along the local gradient direction. If

there is a circular edge in the map, the number of intersections will be maximized at the center

of the circular edge when the radius of the circular arc matches that of the edge.

Assuming an edge pixel forms part of a circular edge of angular radius θcrit, one can define a

prescription for the set of pixels that are the potential centers of the edge. The two most likely

candidates in this set are the pixel θcrit away in the direction of the local gradient, and the pixel

the same distance in the opposite direction; the edge could be a step up or a step down. Building

in flexibility to cope with pixelation and noise effects, this set is expanded to two annular arcs

of radius θcrit, oriented in the direction of the local gradient and centred on the edge pixel.

The CHT works by assuming that all edge pixels are part of circular edges. The most likely

circle center at a given radius is defined to be the pixel that is included in the greatest number

of these arcs, counted using an accumulator array. If the search radius matches the radius of a

circular edge within the map, we expect all of the circular edge pixels’ arcs to include the true

center, and the CHT accumulator will show a single clear peak. If the search and true radii are

discrepant, fewer of the circular edge pixels’ arcs will intersect, and this peak will appear as a ring

with decreased amplitude (see Fig. 3.13). When the search and true radii are very discrepant,

any rings will disappear beneath the background due to randomly-oriented noise and other non-

circular edges. Note that “non-circular edges” will include the ∼ 1◦ CMB fluctuations that are
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Figure 3.13: A depiction of the Circular Hough Transform (CHT). On the left is a Boolean
map of edge pixels, as output by the Canny algorithm. Centering a pair of arcs oriented in the
direction of the local gradient about each edge pixel, the CHT counts the number of times each
pixel is intersected. The presence of a circular edge is indicated by a maximum in the CHT score
– the hit count divided by the arc radius – as the arc radii are varied. On the left, we show a set
of arcs, centered on four pixels on the circular edge we wish to detect; there will be no clear peak
in the CHT score for this radius. Increasing the arc radius to match that of the circular edge
(center), there will be a large number of hits at the true center of the edge. On the right, we
show the actual map of the CHT score at each pixel for this example. As this has been scanned
at the correct angular scale, there is a large peak at the center of the circular edge.

qualified as edges by the hysteresis thresholding step.

To compare the CHT results at different search radii, one must divide out the approximately

linear growth with angular radius of the number of pixels in each annular arc. We call this

normalized quantity the “CHT score”. The most likely center and radius of a circular edge

within a map can therefore be found by scanning the map with the CHT at a range of radii and

determining the maximum CHT score.

The blob detection step provides the range of scales θcrit,min ≤ θcrit,i ≤ θcrit,max of potential

circular edges present in each blob. To determine whether a blob contains a circular edge, we

compare the CHT scores obtained by scanning at every 0.25◦ increment within this range, using

annular arcs that are 0.25◦ thick and which cover 45◦ of phase about each edge pixel. The

annular arcs are therefore approximately two pixels thick, and are fairly wide to account for the

effects of pixelation on the gradient direction. The thickness of the CHT annular arcs leads to

an uncertainty in the CHT radius of 0.25◦ and position of 0.50◦. If a circular edge is detected,

we expect a clear peak in the CHT results for a particular blob.

In Fig. 3.14 we show the output of the edge detection algorithm on our illustrative example

bubble collision simulation (see Fig. 3.10). On the left is the portion of the temperature map

containing the collision. On the right we plot the CHT score in the pixels that passed the needlet

significance threshold for θcrit,i = 10◦ (the input value). There is a clear peak at the location

of the true center of the simulated bubble collision, which is ∼ 3 times the average response at

other pixels. Since this feature was flagged in the blob detection step for standard needlets with
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17.10.3

Figure 3.14: The temperature map (left) and CHT score (right) for our illustrative example of
a 10◦ bubble collision simulation. The CHT score is recorded at each pixel passing the needlet
significance threshold. For a search radius of 10◦ there is a clear peak in the CHT score at the
center of the simulated collision.

B = 2.5 at j = 3, the range of radii scanned during the CHT step is determined from Table 3.1

to be 5◦ ≤ θcrit ≤ 14◦. This range contains the true radius θcrit = 10◦. In Fig. 3.15 we plot the

maximum CHT score found in the map for each circular radius, which contains a clear peak at

the true radius of the causal boundary. This signal is a clear and unambiguous signature of a

bubble collision. From visual inspection of the temperature map, it can be seen that we are able

to clearly detect the edge even though the background fluctuations, noise and beam drastically

reduce the sharpness of the observed temperature discontinuity.

Analysis of the WMAP end-to-end simulation

We expect strong circular edges to be extremely rare in a purely Gaussian CMB temperature

map. However, it is possible that foregrounds, instrumental noise, the mask, and other exper-

imental artifacts could lead to a spurious detection of a circular edge. To evaluate this, we

have performed the edge detection step of our analysis pipeline on the features that passed the

significance threshold in the WMAP end-to-end simulation (see Table 3.4) with the KQ75 mask

applied.

Comparing each feature in the end-to-end simulation with the bubble collision example stud-

ied above, the peak structure of the CHT score as a function of angle and morphology in pixel

space are both drastically different. Examining the maximum CHT score as a function of cir-

cular radius, although there are several peaks, the clearest of which is shown in Fig. 3.16, their

amplitude relative to the average score is nowhere near that of the collision example shown in
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Figure 3.15: The global maximum of the CHT score at each circle radius for the collision
simulation shown in Fig. 3.14. The collision has a maximum response for standard needlets with
B = 2.5 at j = 3, which from Table 3.1 sets the search range to be 5◦ ≤ θcrit ≤ 14◦. The peak
of the CHT score at 10◦ clearly identifies the correct angular scale of the simulated collision.

Fig. 3.15. In addition, from the plots of the CHT score at each pixel, there are typically a number

of fairly broad local maxima at different locations with approximately the same score. This is in

contrast to the collision example of Fig. 3.14, which yields a highly peaked score around a small

number of pixels.

Analysis of bubble collision simulations

To better understand the response of our edge detection algorithm to the signal from a bubble

collision in WMAP-quality data, we have analyzed the simulations described in Section 3.5. We

use as inputs the blobs found using the first step of the pipeline, and search for circular edges

over the range of angular scales appropriate to the needlet type and frequency for each blob (see

Table 3.1). We conclude that a true causal edge has been detected if there is a global maximum

for the CHT score at the radius of the true edge and the pixel with the highest score is within

a typical CHT error (0.5◦) of the actual center. We again present our results in the form of a

contour plot denoting exclusion and sensitivity regions in the parameter space of z0 and zcrit.

This is shown in Fig. 3.17 for simulated bubbles with θcrit = 5◦ and 10◦. The plot for the 25◦

collisions is identical to the plot for 10◦ collisions.
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Figure 3.16: The most edge-like feature in the WMAP end-to-end simulation. The contrast
in scores as a function of position (left) and radius (right) is greatly reduced compared to the
collision example (Figs. 3.14 and 3.15).

Again, from the size of the sensitivity region, we conclude that our ability to make a detection

is dependent on the location of the collision and the particular realization of the background

CMB fluctuations. The exclusion region for the 10◦ (and 25◦) collisions is far larger than for

the 5◦ collisions. We attribute this to the proliferation of ∼ 1◦-sized features in the background

fluctuations, which can both disrupt a significant fraction of the edge pixels in a small colli-

sion and swamp the collision signal with their own strong gradients. We therefore expect our

sensitivity to edges at small angular scales θcrit . 5◦ to be quite poor at WMAP resolution.

As the performance of the edge detection algorithm for 10◦ and 25◦ collisions is identical, we

conclude that the 10◦ results are fairly representative of our sensitivities over a wide range of

angular scales θcrit & 10◦. Most of the collisions we mark as a detection have a clear peak in the

CHT score of the type seen in Fig. 3.15. If a collision has parameters in the exclusion region, it

would be reliably detected. Based on these results, the first two steps of our pipeline can detect

bubble collisions with central modulations |z0| & 3× 10−5 and causal edges |zcrit| & 3× 10−5 at

θcrit & 5◦ in WMAP-quality data.

3.6.3 Parameter estimation and model selection

In many CMB anomaly analyses (but not all – see, e.g. Groeneboom et al. (2010); Hoftuft et al.

(2009); Cruz et al. (2008)), the significance of a signal is quantified by calculating the frequentist

P -value of some relevant statistic. This typically involves doing a large number of Monte Carlo

realizations of the standard cosmological model (i.e., the “null hypothesis”), calculating the

above statistic for each, and finding the fraction for which the statistic has a “more extreme”

value than was actually observed. There are several problems with this approach. First, the
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Figure 3.17: Exclusion (black) and sensitivity (grey) regions (see Fig. 3.11) for the edge detection
step of the analysis pipeline applied to a set of 5◦ (left) and 10◦ (right) simulated bubble collisions.

calculated P -value is only a measure of how (un)likely the measured data were given the null

hypothesis of the standard model; no comparison is made to an alternative model (which is what

we are primarily interested in here). Second, the notion of “more extreme” is fundamentally

ambiguous – both “more discrepant” (i.e., values of the statistic which are further from some

fiducial expected value than that which was measured) or “less likely” are common choices9.

The heart of the problem is that all such P -values are integrals over the likelihood, whereas it

is only the likelihood of the actual data that is relevant. The fact that the likelihood and its

integral generally have a similar qualitative dependence in the tail(s) of the distribution (i.e.,

both tend to zero for extreme values of the statistic) can mask this problem. In particular, if

the tails of the likelihood are Gaussian then the integral that gives the P -value falls off more

rapidly than the likelihood itself, and so the resultant P -values are unreasonably harsh on the

null hypothesis. A related problem is that that many attempts to identify CMB anomalies using

frequentist P -values are overly sensitive to a posteriori selection effects (see, e.g. Bennett et al.

(2011) and Pontzen and Peiris (2010) for a discussion of this effect). Here the issue – that the

statistics being applied to the data are often chosen on the basis of interesting features initially

identified in the same data – is not intrinsic to frequentist methods (which, correctly, do not

permit any data to be used more than once); but the need to invent a statistic from which to

calculate a P -value can make it hard to avoid this trap. For these reasons we do not use P -values

in our analysis.

Instead, we adopt a Bayesian approach. Bayes’ theorem provides a prescription for parameter

9For simple, single-peaked, likelihoods these two definitions are at least equivalent, but in some cases (e.g., a
likelihood that is constant over some finite range) neither definition is satisfactory.
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estimation. In addition, given that we have two well-defined hypotheses, we can utilize Bayesian

model comparison to make probabilistic statements about the degree to which the available data

(and theoretical prior information) imply that bubble collisions have been observed. As shown

by Cox (1946), Bayesian methods are the only self-consistent framework for such calculations.

The optimal Bayesian calculation would be to evaluate the likelihood of the entire WMAP data-

set under the two models; however this not computationally feasible at present. In Appendix A.1,

we outline a set of simplifications that allow us to approximate the optimal Bayesian result. As

outlined in Sec. 3.4, we utilize the information on the location and scales of the most probable

bubble collision sites obtained in the blob detection step of the pipeline to implement this

procedure. Even this reduced problem is computationally demanding: analysis of the blobs

detected in the WMAP 7-year data during the first steps of the pipeline requires three days’

processing on 28 cores. Working at full resolution is necessary to ensure that any possible circular

temperature discontinuities are examined.

These computational limitations also mean we are only able to process a limited number

of simulated temperature maps with and without bubble collisions. The WMAP end-to-end

simulation provides a great asset at this stage, giving the best possible measure of what false

detections are to be expected from experimental effects and any systematic errors that are not

included in our likelihood. We also analyze a small number of representative bubble collision

simulations to obtain an estimate of the strength of signal we are looking for.

We now describe our methods and the results from simulations in greater detail.

Bayesian formalism

A model of eternal inflation predicts the average number of collisions N̄s that are, in principle,

detectable by our pipeline on the full sky 10. The ultimate goal of our Bayesian analysis is to

evaluate the full posterior probability distribution for N̄s, given a CMB data set d covering a

sky fraction fsky. Using Bayes’ theorem, this can be written as

Pr(N̄s|d, fsky) =
Pr(N̄s) Pr(d|N̄s, fsky)

Pr(d|fsky)
. (3.26)

The form of the posterior depends on the model prior Pr(N̄s) and the evidence (also known as

the model likelihood) Pr(d|N̄s, fsky). The evidence is defined by marginalizing the likelihood,

Pr(d|m, N̄s, fsky), over the n parameters describing a collision, as specified by the model m.

Once the shape of the posterior has been determined, it is normalized using Pr(d|fsky). The

posterior leads directly to constraints on the values of N̄s consistent with a CMB data set.

10The number of detectable sources N̄s is a subset the total number of sources on the sky N̄ (Eq. 3.1).
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In a landscape scenario, N̄s can be considered as a continuous parameter and the prior Pr(N̄s)

would be determined from a measure over the possible values of N̄s. We can also view N̄s as a

proxy for different models of eternal inflation (i.e., selecting a single value of N̄s), as described

further in Sec. 3.3. The standard cosmological model without bubble collisions is specified by

the case N̄s = 0. Using Eq. 3.26, the probability of a model which predicts N̄s collisions (on

average) relative to that of the standard cosmological model is

Pr(N̄s|d, fsky)

Pr(0|d, fsky)
=

Pr(N̄s)Pr(d|N̄s, fsky)

Pr(0)Pr(d|0, fsky)
. (3.27)

The model priors and the evidence values play an equal role in this relationship, but in the

absence of a detailed understanding of the former, it is often useful to proceed under the as-

sumption that the two models are equally probable a priori. A theory predicting an expected

N̄s collisions is favoured over the standard model when the relative probability on the LHS of

Eq. 3.27 is greater than unity.

It is also useful to provide heuristic conversions between the Bayesian evidence ratio and other

commonly used model comparison quantities. The number of “sigma” of an anomaly statistic,

Nσ, is often used to characterize the deviation from a null model, but it is unambiguously defined

only in the case that the null distribution of the chosen statistic is Gaussian with zero mean. In

such a case the probability of measuring an Nσ deviation is P (N) ∝ exp(−N2/2), which can be

identified approximately with the inverse of the ratio in Eq. 3.27, so that, e.g., a 3σ detection

is comparable to a ratio of approximately one hundred. However we emphasize that both the

number of sigma and related statistics such as ∆χ2 are of limited utility in the context of all

but the most trivial model comparison problems.

Computing Pr(d|N̄s, fsky) by marginalizing over the likelihood for the full prior volume is an

immense computational task, requiring the inversion of the full sky WMAP covariance matrix

at full resolution and marginalizing over all possible numbers, locations, and sizes of collisions.

However, taking advantage of the fact that bubble collisions produce discrete localized effects

on the CMB sky, it is possible to approximate the full-sky Bayesian analysis by a patch-wise

analysis if the most promising candidate signatures can be identified in advance. We describe

in detail in Appendix A.1 an algorithm to perform such a patch-wise approximation to this full

multidimensional integral.

The key ingredient is determining the regions of parameter space where the likelihood is

significantly peaked, and hence gives the most significant contributions to the evidence. If these

regions can be identified, the integral need only be performed over the restricted ranges to obtain

an estimate of the evidence at greatly-reduced computational cost. We use the results of the
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blob detection step of the analysis pipeline to identify the patches which are likely make the most

significant contributions to the integral. Assuming that the bubble collision model likelihood is

peaked in the Nb detected blobs, we show in Appendix A.1 that the unnormalized posterior can

be approximated as

Pr(N̄s|d, fsky) ∝ Pr(N̄s) e
−fskyN̄s

Nb∑

Ns=0

(fskyN̄s)
Ns

Ns!

Nb∑

b1,b2,...,bNs=1



Ns∏

s=1

ρbs

Ns∏

i,j=1

(1− δsi,sj )


 ,

(3.28)

where the pre-factors reflect the fact that the number of collisions present on the observable

sky, Ns, is the realization of a Poisson-like process (of mean fskyN̄s), and ρb is the evidence

ratio evaluated within a candidate collision region (with data sub-set db) using a single bubble

collision template

ρb =
Pr(db|1)

Pr(db|0)
. (3.29)

The posterior can therefore be built from local measures of how well the data are described

by the standard model with and without a collision template. Once Eq. 3.28 is obtained in

a particular case, it can be normalized, although this is not strictly necessary to perform the

parameter estimation and model selection analyses.

To illustrate some possibilities, in Fig. 3.18 we plot the normalized posterior assuming fsky =

0.7 (from the KQ75 mask) and a uniform prior on N̄s, for the case where there is a single detected

blob (left panel), and four detected blobs (right panel). A theory predicting a particular value

of N̄s will be preferred to a theory without bubble collisions if the ratio in Eq. 3.27 is larger

than one. This amounts to comparing the posterior at some value of N̄s to the posterior at

N̄s = 0 (dashed line). To prefer any theory with bubble collisions, in the one-blob case it is

necessary for the blob to yield a local evidence ratio larger than one (here, we plot the posterior

assuming ρb = 4). This is not true when there are multiple blobs, as can be seen in the right

panel of Fig. 3.18, where we plot the posterior assuming each blob has a local evidence ratio

ρb = 0.5. The bubble collision hypothesis (for some values of N̄s) is preferred even when the

local evidence ratios are less than one: a number of marginal detections can be significant when

considered together. We can also obtain any desired confidence intervals on N̄s by examining

the shape of the posterior (although it is always the whole distribution that is the full answer to

any parameter estimation problem).

When the local evidence ratios are large, the posterior can be approximated by Eq. A.16,

appropriately normalized. In Fig. 3.19, we plot the posterior in the limit of large evidence ratios

(again assuming fsky = 0.7) for no blobs, two blobs, and four blobs. Even in the presence of large

local evidence ratios, it can be seen that the posterior has a significant spread due to cosmic
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Figure 3.18: The normalized posterior Pr(N̄s|Nb, fsky) (see Eq. A.16) assuming fsky = 0.7. In
the left panel, we show the posterior obtained for one blob Nb = 1 for a local evidence ratio
ρb = 4. Comparing with the posterior at N̄s = 0 (dashed line), we see that any theory predicting
N̄s . 4 will be preferred over the theory without bubble collisions. In the right panel, we
show the posterior obtained for four blobs with identical local evidence ratios ρb = 1/2. Again,
comparing with the posterior at N̄s = 0, any theory with N̄s . 7 will be preferred over the
theory without bubble collisions. When there are multiple blobs, the bubble collision hypothesis
can be supported even when the evidence ratio for each blob is less than one.

0 2 4 6 8 10 12 14 Ns

0.05
0.10
0.15
0.20
0.25
0.30

Pr�Ns � Nb, fsky�

Figure 3.19: The full posterior Pr(N̄s|Nb, fsky) (Eq. A.16) that would be obtained from a con-
clusive detection (i.e., ρbs � 1) of Nb = 0, 2, 4 (solid, dashed, and dot-dashed curves) blobs
containing bubble collisions assuming fsky = 0.7. The presence of a sky cut skews the distri-
bution towards N̄s > Nb. Note that even when features are conclusively detected, there is an
intrinsic uncertainty in N̄s; this is a form of cosmic variance.

variance: we only have access to one realization of bubble collisions on the CMB sky. Note that

this is true even when there are no detected blobs. When there are multiple decisively detected

blobs, the posterior correctly assigns a very small probability to N̄s = 0.

Our analysis also provides constraints on the parameter values of each candidate collision.

The constraints on the n template parameters m are encoded in their joint posterior distribution

Pr(m|db, 1) =
Pr(m) Pr(db|m, 1)

Pr(db, 1)
. (3.30)

The marginal distribution of any subset of the parameters is given by integrating Pr(m|db, 1)

over the remaining parameters which are not of interest. For the bubble collision model the

parameters should include both those describing the collision and the global cosmological pa-

rameters; marginalizing over the latter would give constraints on the properties of a (putative)
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detected collision. We now discuss the analysis of the likelihood and evidence ratios for a patch

in greater detail.

Analysis of candidate bubble collision patches

At the heart of the above formalism for assessing the full posterior for N̄s is the evaluation of

the patch likelihood for a single collision, Pr(db|m, 1). Here the data, db, are the measured

temperature values of the pixels in the vicinity of the detected blob that are not in the sky

cut. The bubble collision model parameters, m, should include both those that describe the

collision, {z0, zcrit, θcrit, θ0, φ0}, as well as the cosmological parameters which determine the CMB

power spectrum. However any plausible bubble collision would be sufficiently localized that the

cosmological parameters are essentially uncorrelated with them; moreover they are sufficiently

tightly constrained from CMB measurements that their uncertainties are minimal in the context

of a template-matching problem like this. Hence we fix the cosmological parameters to their

best-fit WMAP values (Larson et al., 2011) and only the bubble collision parameters are varied.

Hence m = {z0, zcrit, θcrit, θ0, φ0} for the bubble collision model, and there are no free parameters

in the null model. Indeed, the no-collision model can be treated as a special case of the collision

model in which the collision has zero amplitude.

As both the CMB signal and the WMAP noise are Gaussian, the likelihood has the form

Pr(db|m, 1) ∝ exp

(
−1

2
χ2

)
= exp

{
−1

2
[db − t(m)]TC−1

b [db − t(m)]

}
, (3.31)

where t(m) is the temperature modulation caused by the collision and Cb is the pixel-pixel

covariance matrix. The temperature modulation of the pth pixel is given from Eq. 3.3 as tp = 1+

f(n̂p), where n̂ is the position on the sky. The covariance matrix includes CMB cosmic variance,

Gaussian smoothing approximating the WMAP W-band beam, and the pixel-dependent WMAP

noise. The covariance between two pixels p and q with angular positions n̂p and n̂q is hence

given by

Cp,q = Np,q +
∑

`

2`+ 1

4π
C̄`P`(n̂p · n̂q), (3.32)

where C̄` is the best-fit WMAP CMB power spectrum convolved with a Gaussian beam of

FWHM 0.22◦, P`(x) is the Legendre polynomial of degree `, and Np,q is the noise covariance

between pixels. This is taken to be

Np,q = δp,q
σ2

W

Nobs,p
, (3.33)
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where δp,q is the Kronecker delta function, σW = 6.549 mK is the RMS noise of the W-band

detectors, and Nobs,p is the number of times WMAP has observed the pth pixel. To preserve

any edges, we must invert Cb at full resolution. Given available computational resources, the

maximum area of the sky we can study at any one time is limited to patches of radius ∼ 11◦

surrounding the center of each detected blob.

The evaluation of the evidence integral Eq. A.12 and the full characterization of the posterior

distribution of the parameters are both computationally challenging – even when restricted to

small patches – as they require a large number of likelihood evaluations. In all but the simplest

of cases it is fatally inefficient to evaluate the likelihood over a multi-dimensional grid and so a

variety of sampling algorithms have been developed in which the likelihood is only evaluated in

the high posterior regions that are of most interest. For both parameter estimation and evidence

calculations we use the nested sampling algorithm (Skilling, 2004) as implemented in the publicly

available MultiNest package (Feroz et al., 2009). MultiNest performs numerical integration in

order to estimate the evidence values; the required convergence of the integration can be adjusted

to balance computation speed with accuracy. At the settings we use, the evidence values returned

by MultiNest are accurate to ∼ 10%. We use the getdist routine included in CosmoMC (Lewis

and Bridle, 2002) to extract parameter estimates and uncertainties.

The parameter prior Pr(m) in Eq. 3.30 is derived from theory, previous experimental results,

and the limitations of the data-set and pipeline: it encompasses the full prior understanding

of what defines a detectable collision. Because we lack a detailed theoretical prediction for the

amplitude parameters in each template (as discussed in Sec. 3.3), we assume a uniform prior on

z0 and zcrit over the ranges −10−4 ≤ z0 ≤ 10−4 and −10−4 ≤ zcrit ≤ 10−4, set by the observed

temperature fluctuations in the CMB. Bubbles with larger values of these parameters would have

been visible to the naked eye in any existing CMB data-set. Bubble collisions are expected to

be distributed isotropically on the CMB sky, and so we assume uniform priors on the full ranges

of {cos θ0, φ0} to ensure that the probability of finding a bubble per unit area is constant across

the sphere. Theory predicts that bubble collision radii should range from 0◦ to half-sky, but our

pipeline’s sensitivity is restricted by CMB power at small scales and computational requirements

at large scales. The non-zero prior range for detectable bubble collisions is accordingly restricted,

and we assume uniform priors on θcrit values in the range 2◦ ≤ θcrit ≤ 11◦. 11

To minimize computation time, the evidence integrals are only calculated over the parameter

ranges within which the priors are non-zero and the likelihood is peaked. For each feature, the

11Eq. 3.2 predicts that the angular scale distribution for all bubbles falling within our past light cone varies
with sin θcrit. However, this is derived under the assumption that collisions do not affect our bubble interior,
and a more careful treatment might lead to a correlation between the values of z0, zcrit, and θcrit. To retain
consistency with our uniform priors on z0 and zcrit, we assume a uniform prior on θcrit. Regardless, both choices
for the prior lead to identical conclusions for the WMAP 7-year data.
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angular scale lookup tables (Table 3.1) indicate the range of interest for θcrit. Merging all of the

sets of significant pixels found for each feature yields the ranges for {θ0, φ0}. As the needlets

are equally sensitive to cold and hot features with varying profiles, little information about the

ranges of interest for {z0, zcrit} can be extracted from the blob detection results, so the full prior

volume must be considered. The accuracy of this procedure has been verified by performing the

integral on the same patch of sky using different parameter ranges for {θcrit, θ0, φ0}. As long as

the likelihood peak is encompassed by the parameter ranges given to Multinest, the returned

evidence values agree to within numerical accuracy.

For the fiducial collision example shown in Fig. 3.10, our analysis yields an evidence ratio

of ln ρb = 119.8 ± 0.3: the collision model is a very good fit to the data. The full-sky posterior

would favour any theory predicting bubble collisions over a large range of N̄s. The marginalized

bounds on the parameters are compared to the input parameters in the first row of Table 3.6:

the agreement is excellent. However, to make a final judgment about a detection, we must ask

what types of evidence ratios we get for false detections in the WMAP end-to-end simulation.

Analysis of the WMAP end-to-end simulation

We have performed the full Bayesian parameter estimation and model selection analysis on the

blobs found in the WMAP end-to-end simulation (see Table 3.4). The total processing time for

the full pipeline to run on this single map is on the order of 12 hours on 28 cores. Our results

for the evidence ratios and marginalized parameter constraints for {z0, zcrit, θcrit, θ0, φ0} for each

feature are recorded in Table 3.5.

The evidence ratios for the features identified in the blob-detection step of the pipeline are all

significantly less than one. We can therefore approximate the full posterior for N̄s by Eq. A.20,

and rule out N̄s & 1.6 at the 68% confidence level. The posterior is maximized at N̄s = 0, and

we therefore correctly conclude that the data from the end-to-end simulation does not warrant

augmenting ΛCDM with bubble collisions.

These results from the end-to-end simulation yield quantitative information on the degree to

which systematics and foregrounds could mimic the signal from a bubble collision. Reassuringly,

no features yield evidence ratios greater than one. To be distinguishable from systematics and

foregrounds, we require the evidence ratios that we find for any feature to at least exceed the

evidence ratios found in the end-to-end simulation at similar needlet frequencies.
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Analysis of bubble collision simulations

The long processing time, even for a single map, prohibits us from running the Bayesian param-

eter estimation and model selection analysis on the full set of bubble collision simulations. We

therefore choose a small number of representative examples from the set of simulated collisions

passing the needlet significance threshold (drawn from the exclusion and sensitivity regions of

Fig. 3.11). Six 10◦ collision simulations were chosen to sample distinct areas of our parameter

space, specifically collisions with:

1. a large central amplitude and edge;

2. a small central amplitude but large edge;

3. a large central amplitude but small edge;

4. a medium central amplitude and medium edge;

5. a small central amplitude and medium edge, and;

6. a small central amplitude and small edge.

The first two collisions lie in the CHT exclusion zone, the third in the needlets exclusion zone,

and the others in the sensitivity region. All collisions were placed at the low-noise location to

maximize the chance of a detection.

The results of the Bayesian analysis of the collision simulations are displayed in Table 3.6.

The first example corresponds to the collision in Fig. 3.10, and is clearly a highly significant

detection with an evidence ratio of ln ρb ' 120. The second example is, again, an extremely

clear detection, with ln ρb ' 136. While the evidence for the third example is numerically lower

than for the strongly discontinuous cases, at ln ρb ' 29, it is again a conclusive detection. In

each of these examples, the full-sky posterior assuming Nb = 1 (which is well approximated by

Eq. A.18), would prefer models with bubble collisions over a wide range of N̄s.

For the collisions sampled in the sensitivity region, the maximum needlet significance recorded

in each case was around S ' 4, which is on the upper end of the significances found in the end-

to-end simulation: similar features in the data would be passed to the Bayesian analysis section

of the pipeline. The evidence ratios were found to be ln ρb ' 9 for the collision with a medium

central amplitude and a medium edge, ln ρb ' −1 for the collision with the medium edge but a

smaller central amplitude, and ln ρb ' −7 for the collision with a small edge. Since the latter two

templates differ only by the value of zcrit, this is further proof that the presence of a detectable

causal boundary increases our ability to distinguish a collision. In addition, comparing examples

3 and 4, it can be seen that changing the central amplitude by a bit more than a factor of
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two yields an evidence ratio that is orders of magnitude larger. Apparently, there are rather

sharply defined limits of detection. For these marginal cases, the parameter uncertainties are

significantly underestimated due to the relative strength of the CMB and noise. Only in the

case of the collision with a medium amplitude and medium edge could we conclude that models

with bubble collisions are preferred over those without over a modest range in N̄s.

In conclusion, for the simulated collisions in the needlet and CHT exclusion regions of pa-

rameter space, our pipeline can clearly determine that the bubble collision hypothesis is favoured

for a variety of N̄s. In the other cases we have studied, where the collision lies in the needlet

sensitivity region, the conclusion is less clear. The evidence ratios are higher than most of

those in the end-to-end simulation, but not much greater. They are also small in magnitude,

and therefore do not yield full-sky posteriors that favor the bubble collision hypothesis. Thus,

while we might rule these features out as being systematics or foregrounds, better data would

be needed to definitively establish the bubble collision hypothesis. Furthermore, the bounds on

parameter values in detections associated with the sensitivity regions of parameter space should

be regarded as rough estimates only. Note also that since the data sets we consider for each

blob are restricted to patches of the sky smaller than 11◦, the gain in sensitivity that arises from

the existence of a circular temperature discontinuity will not be present for modulations with

θcrit & 11◦. For large features with an edge, the evidence ratios we obtain would therefore be an

underestimate.

3.6.4 Summary of the analysis pipeline and conditions for claiming a

detection

We now summarize the analysis pipeline and the interpretation of its outputs. First, the analysis

pipeline segments the sky into “blobs,” each of which corresponds to a region which, for some

needlet type and frequency, passes our needlet significance threshold. A specific region of the

temperature map can be covered by multiple blobs if there is a response for multiple needlet

types/frequencies at the same location. The output of this first step in our pipeline is the

location, size, and maximum significance associated with each blob. The edge detection step

of our pipeline finds the CHT score as a function of assumed circle size and pixel. If there

is a clearly peaked global maximum for the CHT score, this can be processed into the most

likely circle center and angular scale. In parallel, we calculate the marginalized constraints

on the parameters {z0, zcrit, θcrit, θ0, φ0} and Bayesian evidence ratio ρb for each feature. These

evidence ratios are then used to construct the full-sky posterior Pr(N̄s|Nb, fsky) (Eq. 3.28) which

is a function of N̄s.
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The posterior allows us to put constraints on the possible values of N̄s that are consistent

with the data. Comparing the value of the posterior at N̄s = 0 and some particular value of N̄s

specifies whether or not the ΛCDM model should be superseded by a model that also predicts

on average N̄s bubble collisions. If a large ratio of the posteriors is obtained, a conclusive

detection of the bubble collision hypothesis can be claimed (provided a model that predicts an

appropriate value of N̄s exists). A clear peak in the CHT score would indicate the presence of

a circular temperature discontinuity in the CMB. This is a clear signature of bubble collisions,

and would be nearly conclusive evidence for the eternal inflation scenario. We have found using

simulations that a clear edge also yields large evidence ratios, indicating that these two tests

are complementary. However, an edge is not necessary to verify the bubble collision hypothesis.

There is a clear expectation obtained from the end-to-end simulation for the contribution from

false detections due to systematics and foregrounds: the absence of a clear peak in the CHT

score, and evidence ratios for each blob not exceeding ln ρb ∼ −6.6 at detectable scales.

3.7 Analysis of the WMAP 7-year data

Our analysis of the W-band WMAP 7-year foreground-reduced temperature map with the KQ75

mask produces a total of 38 blobs passing our needlet sensitivity thresholds. These blobs can

be grouped into 15 distinct features, four of which either intersect or are within a few pixels of

the main Galactic cut; these features are assumed to be responses to the mask, and we do not

consider them further. The properties of the blobs belonging to the 11 remaining features are

given in Table 3.7.

A number of these features have been noted previously. Feature 2 is at the same position

as the famous Cold Spot (Cruz et al., 2005). In addition, features 1 and 3 are coincident with

the most significant hot spots identified in the needlet analysis of Pietrobon et al. (2008). The

number of features we have found is consistent with the results from the WMAP end-to-end

simulation, although the simulation does not contain as many high-significance features at low

j. In addition, the most significant features in the WMAP 7-year data generate responses from

multiple needlet types at multiple frequencies (e.g., the Cold Spot is picked out by seven needlet

frequencies), whereas features in the end-to-end simulation tend to be highlighted only by a

single needlet. Interestingly, 9 of the 11 features identified as significant are in the Southern

Galactic hemisphere.

The CHT scores do not have a clear peak at any angular scale or location for any of the

detected features. Indeed, the detailed outputs for the data are completely consistent with

those obtained for the end-to-end simulation. The largest CHT peak found in the data is
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feature blob B j θ0 φ0 blob radius S
1 1 2.5 2 140.1 173.7 4.5 3.76
1 2 1.8 3 140.9 174.4 5.3 3.48
2 1 2.5 3 147.8 209.5 4.1 4.49
2 2 1.8 4 148.2 207.7 5.5 4.55
2 3 1.8 5 148.5 210.2 1.4 3.37
2 4 1.4 7 147.8 209.5 2.5 3.81
2 5 1.4 8 147.8 209.5 4.1 4.58
2 6 1.4 9 147.4 208.1 2.8 4.30
2 7 1.4 10 146.6 207.5 1.3 3.74
3 1 2.5 3 123.2 321.3 2.5 4.09
3 2 1.8 4 122.8 322.4 4.9 3.82
3 3 1.4 7 122.8 321.0 1.9 3.59
3 4 1.4 8 122.8 321.0 3.2 4.01
3 5 1.4 9 122.8 321.0 2.7 4.30
3 6 1.4 10 122.4 320.6 1.5 3.78
4 1 2.5 4 145.1 33.0 0.9 4.20
4 2 1.8 6 145.5 32.4 0.7 3.72
4 3 1.4 11 145.1 33.0 0.9 3.95
5 1 1.8 5 32.2 74.0 1.2 3.41
6 1 1.8 5 128.7 91.1 1.2 3.37
7 1 1.8 5 169.8 181.6 2.3 3.82
7 2 1.8 6 169.0 187.5 0.8 3.76
7 3 1.4 10 169.4 184.7 1.5 4.12
7 4 1.4 11 168.7 187.3 1.1 4.07
8 1 1.8 6 57.9 115.7 0.7 3.78
9 1 1.8 7 152.3 241.8 0.6 4.12
10 1 1.4 10 167.2 268.7 1.0 3.99
10 2 1.4 11 166.8 271.3 1.0 4.09
11 1 1.4 11 115.0 22.5 0.5 3.80
11 2 1.4 12 114.6 22.1 0.5 4.32

Table 3.7: Features found by the needlet transform in the WMAP 7-year data. Features 1 and
3 correspond to the hot spots found in Pietrobon et al. (2008); feature 2 is the Cold Spot (Cruz
et al., 2005). Angular quantities are reported in degrees.
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Figure 3.20: The clearest peak found during the edge-detection analysis of the WMAP data.
The contrasts in scores as a function of position (left) and radius (right) are comparable to those
obtained in the analysis of the end-to-end simulation (Fig. 3.16), and greatly reduced compared
to the collision example (Figs. 3.14 and 3.15).

shown in Fig. 3.20 (which should be compared to the most peak-like feature found in the end-

to-end simulation, shown in Fig. 3.16). We therefore find no evidence for circular temperature

discontinuities in the WMAP 7-year data, and can rule out bubble collisions in the CHT exclusion

region defined by simulated collisions shown in Fig. 3.17.

The marginalized parameter constraints and local evidence ratio for each of the features is

recorded in Table 3.8. 12 Features 2, 3, 7, and 10 have evidence ratios significantly larger than

those found in the collision-free end-to-end simulation (ln ρb ∼ −6.6), specifically −4.6, −4.1,

−5.4 and −3.8 respectively. Assuming Nb = 4, and using these values for the local evidence

ratios in Eq. 3.28, we find that the posterior is maximized at N̄s = 0, and we can constrain

N̄s < 1.6 at 68% CL. One would need roughly ln ρb ∼ −1 for each of the four features to prefer

the bubble collision hypothesis for any value of N̄s. Therefore, the WMAP 7-year data does not

warrant adding bubble collisions to ΛCDM.

Although the local evidence ratios found for the WMAP 7-year data were not large enough

to yield support for the bubble collision hypothesis, they are about an order of magnitude larger

than what was expected from systematics based on the end-to-end simulation. The analysis of

future data sets may increase the significance of these blobs if they are indications of bubble

collisions, or else they will decrease in significance if they are not; in any case they are the most

significant features on our sky, and thus take priority in being further investigated with better

data. Thus, we now examine these four most significant features in more detail. The location of

each of the four features on the sky is shown in Fig. 3.21. A closer view of each feature is shown

12Since we are limited to patches of the sky 11◦ in radius, the evidence ratios we have obtained for features
whose θcrit priors extend beyond ∼ 11◦ will be underestimated if a weak edge exists outside the patch of sky
considered.
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in Fig. 3.22, along with plots of the needlet significances S triggering the Bayesian analysis step,

collision templates for the marginalized parameter constraints found in each case, and the CMB

sky as it would appear with these template contributions removed.

To confirm that these features are not due to residual foregrounds, we have also applied our

suite of needlet transforms to the WMAP 7-year Q (41 GHz) and V (61 GHz) band foreground-

reduced maps. Taking all of the needlets which generate a significant response for the four

most significant features, we calculate the average of the needlet coefficients within the regions

described by the estimated bubble templates. The results are plotted in Fig. 3.23. We show, for

each blob forming part of a feature, the W-band-normalized needlet coefficient averages given

by

∆βjk,Q/V =
β̄jk,Q/V − β̄jk,W

β̄jk,W
, (3.34)

where β̄jk,Q/V/W is the pixel-averaged needlet coefficient value in a given WMAP frequency

band. The plots are consistent with no change in the strength of the signal with frequency,

suggesting that the features are not due to foreground contamination.
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Figure 3.21: Full-sky map showing the positions and sizes of the four features with largest
evidence ratios, alongside the 7-year KQ75 sky cut. Feature 2 is plotted in orange, feature 3 in
red, feature 7 in light blue and feature 10 in light green.

3.8 Conclusions and outlook

An exciting opportunity to confront the eternal inflation scenario with experiment lies in the

observation of collisions between other bubble universes and our own. In this paper, we have

described an algorithm to search for the imprint of bubble collisions on the cosmic microwave

background, and applied it to the WMAP 7-year data. Our search algorithm targets the generic

signatures expected from bubble collisions: azimuthal symmetry, long-wavelength modulation

of the temperature confined to discs on the sky, and circular temperature discontinuities. For

this reason, we expect our analysis to be fairly robust under changing assumptions about the

underlying theory, which is presently rather poorly understood.

The analysis pipeline we have developed takes a two-pronged approach, applied in parallel.

The first uses heuristic techniques to test for the presence of features specific to bubble collisions.

The second is a fully Bayesian algorithm for the general problem of non-Gaussian source detec-

tion, implemented as a patch-wise approximation to the full-sky model selection and parameter

estimation problem. The data set is segmented in a completely automated way, allowing us to

avoid a posteriori selection effects associated with choosing the most “interesting” features on the

CMB sky by hand. The algorithm is tested and thresholds at each step are calibrated using ex-

tensive simulations, and then frozen before ever looking at the data, to follow as much as possible

the philosophy of a blind analysis. Candidate collisions are identified from an input temperature

map based on the response to a suite of needlet transforms (calibrated using simulations with

and without bubble collisions), and grouped into “blobs.” These blobs are scrutinized for circular
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Figure 3.22: Maps of the four features with largest evidence ratios. The top row shows the W-
band temperature map in the locality of the four features, masked with the KQ75 mask. Overlaid
are circles indicating the estimated position and angular scale found in each case. The second
row contains plots of the masked needlet significances for the needlets whose θcrit priors produced
the largest evidence ratios. These plots appear pixelated as the blob detection step is carried
out at reduced resolution. The third row shows the bubble collision templates corresponding to
the estimated model parameters; these templates are subtracted from the W-band data in the
fourth row. The width of each plot is ∼ 16.7◦.

temperature discontinuities using an edge detection algorithm. The quantitative significance of

an edge is characterized using the Circular Hough Transform (CHT). The blobs are also used to

construct an approximation to the full-sky Bayesian parameter estimation and model selection

problem for bubble collisions. The posterior probability distribution over the expectation value

for the number of detectable collisions, N̄s, is then obtained. This allows us to quantify which

of the two models – a theory which predicts on average N̄s bubble collision signatures described

by temperature modulations of the form given in Eq. 3.4, or else the standard model (specified

by N̄s = 0) with CMB plus realistic noise and beam effects – better explains the data.

Applying our analysis pipeline to simulations, we have found that a circular temperature

discontinuity at the causal boundary is a clear signature of bubble collisions.13 Although our

13The observational detection of a circular temperature discontinuity is so unlikely to arise spuriously that it
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Figure 3.23: WMAP channel frequency dependence of the features highlighted by our pipeline.
The W-band-normalized difference in pixel-averaged needlet coefficients between the Q and W
bands (triangles) and V and W bands (diamonds) are plotted for each blob making up a feature,
as highlighted by the full suite of needlet transforms.

analysis can identify collisions without temperature discontinuities, their presence greatly in-

creases our ability to make a conclusive detection. Both the edge-detection and Bayesian model

selection steps have the ability to identify a causal boundary in the patches of the sky that

are highlighted as candidate collisions by the blob detection step of our analysis pipeline. We

have found no evidence for circular temperature discontinuities in the WMAP 7-year data using

either method. Based on our analysis of simulations, this allows us to rule out the presence of

collisions in the exclusion region of Fig. 3.17. For collisions larger than θcrit & 10◦, this corre-

sponds to 105|zcrit| . 3–6 for the amplitude of the circular temperature discontinuity defined in

Eq. 3.4. For collisions on smaller scales, the CHT step loses sensitivity due to the proliferation

of degree-scale blobs in the background CMB fluctuations.

The posterior evaluated using the WMAP 7-year data is maximized at N̄s = 0, and constrains

N̄s < 1.6 at 68% confidence. We therefore conclude that this data set does not favor the

bubble collision hypothesis for any value of N̄s. In light of this null detection, comparing with

provides conclusive evidence of a detection.
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the simulated bubble collisions, we can constrain the central amplitude of the temperature

modulation caused by the collision (defined in Eq. 3.4) to be z0 . 1 × 10−4 over the range

of scales θcrit & 5◦ we have simulated. If the collision is described by a single super-Hubble

wavelength mode confined to a disc on the sky, from Eq. 3.12 we can use these bounds (with the

largest collision size we have simulated: θcrit = 25◦) to constrain Ω
1/2
k Φ(0) . 7 × 10−4 (where

Ωk is the present component in curvature and Φ(0) is the initial magnitude of the Newtonian

potential caused by the collision). More generally, Eq. 3.13 bounds the nucleation rate of bubbles

in our parent vacuum, provided gravitational waves and negative curvature are observed with

future experiments.

The prior on the average number of collisions is chosen to be uniform, parametrizing our

theoretical ignorance of this parameter and allowing easy reinterpretation of the results should

a better-motivated prior be uncovered by ongoing research. Nevertheless, the fact that the

posterior is so strongly peaked at N̄s = 0 means that ΛCDM will be favored unless there is a

strong reason a priori to prefer models producing multiple collisions.

Although we have obtained a null result, our analysis pipeline has identified four features

in the WMAP 7-year data that have Bayesian evidence ratios that are significantly larger than

expected for false detections from an end-to-end simulation of the WMAP experiment. Two of

these features (features 2 and 3) have been noted in previous literature. Feature 2 corresponds

to the WMAP Cold Spot (Cruz et al., 2005) (see Cruz et al. (2010) for a review of its properties),

and feature 3 was identified using standard needlets in Pietrobon et al. (2008). All four features

are far from the Galactic cut of the KQ75 7-year mask (see Fig. 3.21), and none appear to be

responses to the point source components of the mask (see Fig. 3.22). We have confirmed that

the signal in each case is not strongly dependent on the frequency band used (see Fig. 3.23),

providing evidence that these features are not due to astrophysical foregrounds. A number of

analyses, most recently the redshift analysis of Bremer et al. (2010), suggest that the Cold Spot

is primordial and not associated with the integrated Sachs-Wolfe effect of a large void. Further

studies of the other three features would be needed to confirm that they are truly primordial.

Our ability to detect bubble collisions will improve greatly with data from the Planck satellite.

Firstly, Planck’s high-precision measurement of the CMB power spectrum will provide a near-

ideal characterization of the dominant “noise” in the analysis, i.e. the CMB itself, increasing the

algorithm’s accuracy. Secondly, Planck’s decreased instrumental noise will enlarge the exclusion

and sensitivity regions in parameter space for the needlet step of the analysis, as evidenced

by our ability to detect more simulated collisions in low-noise regions of the WMAP data.

While measurements of the temperature power spectrum are cosmic-variance-limited at large
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scales, measurements of individual patches of data are not, and so decreasing the instrumental

noise increases sensitivity. Furthermore, the threefold increase in resolution offered by Planck

will greatly improve our ability to detect circular edges. In addition, the polarization data

from Planck will be of sufficient resolution to look for complementary signatures of bubble

collisions (Czech et al., 2010; Dvorkin et al., 2008). Such an analysis should be able to confirm

if the features we have identified are in fact bubble collisions.

It is also important to determine if other theories predicting azimuthally symmetric features

in the CMB (Cornish et al., 1998; Cruz et al., 2008; Afshordi et al., 2010; Kovetz et al., 2010) are

better fits to the data. The blob and edge detection steps in our analysis pipeline are sensitive

to a variety of possible signatures, and given a model, the Bayesian model comparison step could

be easily tailored to accommodate different forms of the temperature modulation. Because our

pipeline is automated, we can compare the evidence ratios obtained for different models to decide

which is a better fit, without recourse to a posteriori choices of which features to analyze.

In conclusion, we have presented a powerful algorithm for analyzing CMB data for signatures

of bubble collisions. Applying this pipeline to the WMAP 7-year data, we have constrained

the possible parameter space of bubble collisions, as well as identifying interesting candidate

signatures in the data for further investigation. Future data from the Planck experiment will

allow us to greatly improve on these results. If confirmed, the presence of bubble collisions in

the CMB would be an extraordinary insight into the origins of our universe.
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Chapter 4

Robust constraint on cosmic

textures from the cosmic

microwave background

4.1 Abstract

Fluctuations in the cosmic microwave background (CMB) contain information which has been

pivotal in establishing the current cosmological model. These data can also be used to test well-

motivated additions to this model, such as cosmic textures. Textures are a type of topological

defect that can be produced during a cosmological phase transition in the early universe, and

which leave characteristic hot and cold spots in the CMB. We apply Bayesian methods to carry

out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave

Anisotropy Probe. We conclude that current data do not warrant augmenting the standard

cosmological model with textures. We rule out at 95% confidence models that predict more

than 6 detectable cosmic textures on the full sky.

4.2 Introduction

Precision measurements of anisotropies in the cosmic microwave background (CMB) radiation

have been instrumental in establishing the standard “ΛCDM” model of cosmology: that the

universe is composed mostly of dark energy and dark matter, with structures seeded by nearly

scale-invariant Gaussian density fluctuations. In addition to establishing ΛCDM, the CMB is

also an ideal observable for determining if there are departures from this baseline model.
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In this paper, we present a novel algorithm for the analysis of CMB data from the Wilkinson

Microwave Anisotropy Probe (WMAP) (Bennett et al., 2003a) to search for the presence of a

class of topological defects known as cosmic textures (Turok, 1989). Although textures (and

other topological defects, such as cosmic strings) have been ruled out as the dominant source

for the primordial perturbations (Albrecht et al., 1999, 1997), their production is inevitable in

theories in which a non-Abelian global symmetry is broken (Kibble, 1976). Previous work (Cruz

et al., 2007; Cruz et al., 2008; Cruz et al., 2010; Vielva et al., 2011) presented evidence, based on

the properties of a single feature in the CMB, that ΛCDM should be augmented by adding cosmic

textures. Implementing Bayesian model selection using data on the full sky, we are able to put

the texture hypothesis to a much more stringent test. Incorporating this extra information, we

conclude that the WMAP 7-year data do not warrant augmenting ΛCDM with cosmic textures,

and place constraints on theories giving rise to textures. Our algorithm is easily extendable to

incorporate better data, multiple datasets, and a more complete theoretical understanding of

the properties and evolution of cosmic textures.

4.3 Cosmic texture theory

The theory of cosmic textures posits a phase transition in the early universe in which a non-

Abelian global symmetry is broken. In an expanding universe, different regions of the universe

can be out of causal contact, obstructing the symmetry-breaking phase transition from occurring

in the same manner everywhere in space (Kibble, 1976). Therefore, a scale-invariant set of knots

in the symmetry-breaking order parameter inevitably form: these are cosmic textures. Subse-

quent to the phase transition, knots from the distribution come into causal contact with their

surroundings and undergo collapse (Turok, 1989; Turok and Spergel, 1991; Spergel et al., 1991;

Pen et al., 1994; Turok and Spergel, 1990). Upon collapse, textures unwind when the gradient

energy of the field configuration exceeds the energy required to restore the global symmetry. As

the field re-orders, the energy of the texture configuration is released as an outgoing shell of

scalar field radiation.

The gravitational potential associated with a cosmic texture varies in time as it collapses and

subsequently explodes. CMB photons passing through an evolving texture will be redshifted

if they pass through a collapsing texture, and blueshifted if they pass through an exploding

texture (Turok and Spergel, 1990). Each texture unwinding event therefore produces an additive

hot or cold spot on the sky, which can be approximated as a disc whose angular size, θc, depends

on the distance to the texture unwinding event and whose amplitude, ε ≡ 8π2Gη2, depends on

the scale of symmetry breaking η. The temperature profile in the central region of an unwinding
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event situated at the Galactic North Pole can be approximated as (Turok and Spergel, 1990)

t(θ, φ) =
(−1)p ε√

1 + 4
(
θ
θc

)2
, (4.1)

where θ and φ are Galactic co-latitude and longitude, respectively, and p = {0, 1}. Here p = 0

corresponds to a hot spot and p = 1 to a cold spot. The form of the modulation for large

θ is presently unknown; following Cruz et al. (2007) and Cruz et al. (2008), we match onto a

Gaussian profile at the half-maximum radius, θ∗ =
√

3θc/2.

The angular scale distribution is determined by the evolution of the cosmological horizon

during the matter-dominated era (Turok and Spergel, 1990), which is fixed by the late-time

cosmological parameters of the ΛCDM model. In addition, each feature is equally likely to be:

(i) hot or cold, and (ii) located at any point on the sky, allowing us to define the prior over the

“local” template parameters as

Pr(p, θc, θ0, φ0|ε) =
sin θ0

4πθ3
c

(
1

(2◦)
2 −

1

(50◦)
2

)−1

, (4.2)

where 0 ≤ θ0 ≤ π, 0 ≤ φ0 < 2π, and we take 2◦ ≤ θc ≤ 50◦. The lower limit on θc results from

the large power on degree scales in the CMB; the upper limit stems from the fact that templates

with θc > 50◦ are large enough to cover the whole sky and overlap themselves, rendering Eq. 4.1

invalid.

Different theories giving rise to textures yield different predictions for the symmetry break-

ing scale and frequency of texture unwinding events; however, all mechanisms produce CMB

modulations of the form described in Eq. 4.1. Observationally, theories giving rise to textures

are therefore differentiated only by the expected number of detectable texture unwinding events

on the CMB sky, N̄s, and their amplitude, ε. In our analysis, the background CMB fluctuations

dominate the definition of detectability. The prior probability Pr(N̄s, ε) is set by using simula-

tions to determine the parameter space to which our algorithm is sensitive, as we will discuss

shortly.

The ΛCDM+texture model can therefore be fully described by: the standard ΛCDM pa-

rameters; a set of “global” texture parameters, m0 = {N̄s, ε}, labelling theories; a set of “local”

parameters, mi = {p, θc, θ0, φ0}i, describing each texture; and theoretical priors on these pa-

rameters, Pr(m0) and Pr(mi|m0). To test the ΛCDM+textures model against vanilla ΛCDM,

we need only vary those parameters that are unique to the more complex model (Dickey, 1971).

We therefore fix the ΛCDM parameters to their best-fit values from the analysis of WMAP
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7-year data (Komatsu et al., 2011) (hereafter referred to as WMAP7). We will now describe the

specifics of our search algorithm.

4.4 Searching for textures

The fundamental question posed by this analysis is: are the WMAP7 data better described by

the standard ΛCDM cosmological model or ΛCDM plus cosmic textures? The goal is to calculate

the joint posterior distribution of N̄s and ε, given the available data. Pure ΛCDM corresponds

to N̄s = 0. We avoid the a posteriori selection effects associated with postdicting an explanation

for anomalous portions of the data (see Bennett et al. (2011) for an in-depth discussion) by

performing an analysis of the full dataset. This is important, given that previous evidence (Cruz

et al., 2008) for cosmic textures in the CMB was based on the analysis of a single anomalous

feature, the so-called CMB Cold Spot (Cruz et al., 2010).

Given an expected number of detectable textures over the whole sky, N̄s, the actual number

of detectable textures, Ns, is drawn from a Poisson distribution with mean fskyN̄s, where fsky is

the fraction of the sky covered by the observations. The full posterior probability distribution of

the global parameters describing the texture model, ε and N̄s, is given by marginalizing the like-

lihood, Pr(d|m1, . . .mNs , ε,Ns, fsky), weighted by the prior, over the (unknown) actual number

of textures and their individual properties. This is an extremely challenging integral to evaluate

directly, but a good approximation to it can be found by identifying the regions of this parame-

ter space in which the likelihood is appreciable and only including these contributions (Feeney

et al., 2011a,b). Extending this formalism to also incorporate the global parameter ε allows us to

self-consistently combine the evidence that each candidate is a texture into a global constraint

on the texture theory. The resultant expression (cf. Feeney et al. (2011a) and Feeney et al.

(2011b)) is

Pr(ε, N̄s|d, fsky) ' Pr(ε, N̄s)Pr(d|Ns = 0, fsky)

Pr(d|fsky)
e−fskyN̄s ×

Nb∑

Ns=0

(fskyN̄s)
Ns

Ns!

Nb∑

b1,b2,...,bNs=1

∆b1b2...bNs

Ns∏

s=1

ρbs(ε) , (4.3)

where Pr(ε, N̄s) is the prior (the properties of which are discussed below), Pr(d|Ns = 0, fsky) is

the likelihood for ΛCDM (i.e. the likelihood assuming no textures), and Nb denotes the number

of regions on the sky, or “blobs,” containing candidate signatures, each labeled by bi. The actual

number of detectable textures Ns lies between 0 and Nb. The quantity ∆b1b2...bNs is one when

all indices take distinct values and zero otherwise: it generates all permutations of Ns textures
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located in Nb blobs, assuming no more than one texture per blob. Finally, the quantity ρbi(ε),

defined as

ρbi(ε) ≡
∑

p=0,1

∫
bi

dθ0dφ0

∫
dθcPr(p, θc, θ0, φ0|ε)Pr(dbi |p, θc, θ0, φ0, ε,Ns = 1, fsky)

fsky Pr(dbi |Ns = 0, fsky)
, (4.4)

is a patch-based evidence ratio evaluated in each blob: this is a measure of how much better

ΛCDM plus a single texture fits the data than pure ΛCDM, considering only the data in blob bi.

The factor of fsky appearing in the denominator accounts for the fact that we are restricted to

detecting textures outside the sky cut. Unless the data provide strong support for the presence of

a texture, the evidence ratio penalizes this more complicated model through the larger volume

of parameter space that must be considered in constructing the priors, thus self-consistently

implementing Occam’s razor.

The likelihood for blob bi is

Pr(dbi |p, θc, θ0, φ0, ε,Ns = 1, fsky) =
1

(2π)Npix,bi
/2|Cbi |

e
−[dbi−t(ε,m1)]C−1

bi
[dbi−t(ε,m1)]T/2

, (4.5)

where Npix,bi is the total number of pixels in the blob, dbi are the data points in the blob, and

Cbi is the pixel-pixel covariance matrix using only pixels contained in the blob, which includes

the fluctuations due to ΛCDM as well as instrumental noise and the effects of the beam.

4.5 Locating texture candidates

To evaluate Eq. 4.3, we must first identify the most promising candidates in the map. We do so

by employing the suite of spherical needlet transforms (Marinucci et al., 2008; Pietrobon et al.,

2008; Scodeller et al., 2011) defined in Feeney et al. (2011a). Filtering CMB temperature maps

with spherical needlets yields information about both the position and angular size of interesting

features. The statistics of the filtered field (established using 3000 simulated Gaussian CMB

realizations) can then be used to assess the significance of a candidate. Applying the needlet

transform to texture templates (Eq. 4.1) of various sizes yields a lookup table specifying the

needlet whose response is maximal at each texture size. This table can then be used to identify

peaks in a filtered input map with a texture candidate of a certain size. To minimize the number

of false detections, while not discarding potentially interesting signals, we determine a set of size-

dependent thresholds (identical to those in Feeney et al. (2011a)) using an end-to-end simulation

of the WMAP experiment (see Jarosik et al. (2011) and Gold et al. (2011)) containing a ΛCDM

CMB as well as realistic foregrounds and systematics that we cannot include in our likelihood
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function. The thresholds chosen restrict the number of candidate textures – by definition false

detections – to be of order ten. All thresholds and parameters in the needlet transform are fixed

at this point.

4.6 Sensitivity testing

To determine our ability to detect textures given our thresholds, we generate a set of CMB maps

from the WMAP7 best-fit power spectrum, and place textures of varying ε and θc in both a region

with low and high instrumental noise (as the noise properties of the WMAP experiment vary

according to position on the sky). We find that, for 2◦ ≤ θc ≤ 50◦, the significance threshold is

certainly exceeded (and therefore a candidate identified) for ε > 10−4. For a favorable realization

of the background CMB and instrumental noise, candidates are detected for ε > 2.5 × 10−5 at

scales θc & 5◦ and ε > 5 × 10−5 at somewhat smaller scales. We use ε = 2.5 × 10−5 as a lower

limit for detectable textures, and neglect the effect of θc on our candidate detection efficiency as

it is far less important than the factor of θ−3
c in Eq. 4.2.

4.7 Calculating the texture posterior probability

Once the candidate textures have been identified, the posterior probability distribution Eq. 4.3

can be calculated by first evaluating the patch-based evidence ratio Eq. 4.4 for each blob using

the MultiNest (Feroz et al., 2009; Feroz and Hobson, 2008) nested sampling software. This

requires calculating the inverse covariance matrix C−1
bi

, which is extremely memory-intensive

at full WMAP resolution: the necessary storage capacity scales with size as θ4
c . We therefore

employ an adaptive-resolution analysis, processing each blob at the highest resolution possible

given its size and the available computational resources. This removes the limitation on blob

size of Feeney et al. (2011a) and Feeney et al. (2011b).

The only remaining quantity to evaluate in Eq. 4.3 is the prior Pr(ε, N̄s). We choose a

uniform prior for ε between 2.5 × 10−5 ≤ ε ≤ 1.0 × 10−4. The lower bound is an estimate of

what is detectable with our pipeline, determined by the simulations described above. The upper

bound comes from requiring that the symmetry-breaking scale for textures, η, is below the scale

of cosmological inflation. To be consistent with the lack of observed B-mode polarization in

the CMB (Larson et al., 2011; Komatsu et al., 2011), the scale of inflation must be less than

approximately 1016 GeV, constraining ε to be less than roughly 10−4 (this agrees with the prior

of Cruz et al. (2007)).

We adopt a uniform prior on N̄s between 0 ≤ N̄s ≤ 10. The comoving density of textures
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produced in a phase transition depends on the particular texture model in question, and can be

determined from simulations. The total number of unwinding events is obtained by integrating

this density over the four-volume swept out by the CMB photons. For example, simulations (Cruz

et al., 2007) of SU(2) textures indicate that we can expect to have causal access to roughly 7

textures with θc > 2◦ in the CMB. The number of these unwinding events which are then

detectable is mainly a function of our particular realization of the background CMB. Our choice

of a uniform prior accounts for our ignorance of both the precise theory giving rise to textures

and the precise number of detectable textures in the context of a specific theory. This allows us

to compare ΛCDM and all models that give rise to textures. Under the assumption of a uniform

prior the posterior is simply proportional to the likelihood; results for a different prior on N̄s

could be obtained easily by reweighting the current posterior.

The significance required to favor the ΛCDM+textures model can be understood by eval-

uating Eq. 4.3 using a set of hypothetical evidence ratios ρbi(ε), assuming that two candidate

textures have been located in the data. The evidence ratios are chosen to be either low-amplitude

and flat in ε (the case where each blob yields no support for the texture model), or Gaussian

with varying amplitude (indicating varying degrees of support for the texture model). In all

cases, the Gaussians are chosen to peak at the same value, ε = 5 × 10−5, and have the same

standard deviation, σ = 5 × 10−6. The amplitudes of the Gaussian peaks are selected so that
∫
ρbi(ε) Pr(ε) dε is 1/20, 1, or 20. These values are indicative of weak, intermediate, and strong

texture signals, respectively. No maps or textures are simulated for this step: only the evidence

ratios themselves.

The posteriors for all combinations of the hypothetical evidence ratios are shown in Fig. 4.1.

When none of the candidate features support the texture hypothesis (top row), the posterior is

exponentially decreasing in N̄s. In this case, we would correctly conclude that pure ΛCDM is

strongly favored, and no constraints on ε could be extracted. When one or two blobs produce

a peaked evidence ratio (central and bottom rows), it becomes possible to make a detection.

As the amplitudes of the evidence ratios are increased (left to right), the posterior begins to

bulge, before ultimately becoming peaked. We would correctly conclude that the data favor

ΛCDM+textures over pure ΛCDM if a peak in the posterior at N̄s 6= 0 was sufficiently higher

than the value of the posterior at N̄s = 0. Comparing the central and bottom rows of Fig. 4.1,

a detection can be made either in the case where there is a single strong candidate, or the case

where there is a number of moderately strong candidates (provided each ρbi(ε) is peaked in the

same range of ε). For the one- and two-strong-candidate cases (the centre- and bottom-right

plots in Fig. 4.1), the peaks of the posterior (after marginalizing over ε) are 10 and 1500 times
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Figure 4.1: Regions containing 68% (dark blue) and 95% (light blue) of the posterior probability
distribution, Eq. 4.3, for the hypothetical situations described in the text. Each case contains
two hypothetical texture candidates. Top row: both candidates are ΛCDM only, and have
low-amplitude, flat evidence ratios, ρbi(ε). Middle row: one candidate is “texture-like”, and
has a Gaussian evidence ratio whose amplitude increases from left to right. Bottom row: both
candidates are texture-like; again, their evidence ratio amplitudes increase from left to right.

that of the value at N̄s = 0, respectively.

Calculating the posterior for the end-to-end simulation of the WMAP experiment yields the

constraints shown as solid and dashed lines in Fig. 4.2. This posterior resembles the top row

of Fig. 4.1, is peaked at N̄s = 0, and is not significantly different from the input priors on the

global texture parameters. We therefore correctly conclude that the end-to-end simulation does

not contain textures.

4.8 Results and conclusions from WMAP

We perform our analysis on the foreground-subtracted 94 GHz W-band temperature map from

the 7-year release of the WMAP experiment (Larson et al., 2011) (prepared by subtracting a

model of known astrophysical foregrounds, as described in Hinshaw et al. (2007)). The W band

has the highest resolution of the five measured by WMAP, with a full-width at half maximum of

0.22◦. To minimize the effects of residual foregrounds, we apply the KQ75 mask, which yields a

sky coverage of fsky = 0.706. The candidate textures are the same as those identified in Feeney

et al. (2011a), minus one which lies outside our prior on θc. The features range in size from 2◦ to
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17.25◦, and we are able to process seven at full WMAP resolution, two at half WMAP resolution

and the largest at a quarter WMAP resolution. Although the lower-resolution computation of

the likelihood for these three largest features does result in reduced accuracy, the impact on the

overall posterior is minimal as the prior for textures of such large size is very low (cf. Eq. 4.2).

Evaluating Eq. 4.3 yields the posterior for cosmic textures in the WMAP7 data shown in

Fig. 4.2 as dark- and light-blue regions. The posterior is clearly peaked at N̄s = 0, and we

find the marginalized constraint on the expected number of detectable textures to be N̄s < 5.9

(at 95% confidence). We therefore conclude that the WMAP7 data do not warrant augmenting

ΛCDM with textures. The marginalized constraint on the scale of symmetry breaking is found

to be 2.6× 10−5 ≤ ε ≤ 1.0× 10−4 (at 95% confidence).

While the posterior is peaked at N̄s = 0, there is also a clear difference between the WMAP7

posterior and that of the end-to-end simulation (over-plotted in Fig. 4.2). Comparing the

WMAP7 posterior to the example plots in Fig. 4.1, our result is also consistent with a signal that

is present, but too weak to provide a detection. The different shape of the posterior is deter-

mined almost entirely by two features, located at (l = 185◦, b = −79◦) and (l = 209◦, b = −57◦)

in Galactic coordinates, the second of which is the Cold Spot (Cruz et al., 2005, 2010). As

in Feeney et al. (2011a), we use information from the multiple frequency bands of the WMAP

instrument to confirm that there is no detectable residual foreground contamination in these

features. This strongly motivates an analysis with better data, as will soon be provided by the

Planck satellite (Planck Collaboration et al., 2011), or a better candidate-location technique,

such as one utilizing optimal filters (McEwen et al., 2012). There is also the possibility of in-

cluding CMB polarization data, as textures would not induce a polarization signal, unlike the

primary CMB perturbations (Vielva et al., 2011)). All of these efforts are currently in progress.

These and other tests will lead to better constraints on – or, if a signal is present, a confirmation

of – the texture hypothesis.
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Chapter 5

Hierarchical Bayesian detection

algorithm for early-universe relics

in the cosmic microwave

background

5.1 Abstract

A number of theoretically well-motivated additions to the standard cosmological model predict

weak signatures in the form of spatially localized sources embedded in the cosmic microwave

background (CMB) fluctuations. We present a hierarchical Bayesian statistical formalism and a

complete data analysis pipeline for testing such scenarios. We derive an accurate approximation

to the full posterior probability distribution over the parameters defining any theory that predicts

sources embedded in the CMB, and perform an extensive set of tests in order to establish its

validity. The approximation is implemented using a modular algorithm, designed to avoid a

posteriori selection effects, which combines a candidate-detection stage with a full Bayesian

model-selection and parameter-estimation analysis. We apply this pipeline to theories that

predict cosmic textures and bubble collisions, extending previous analyses by using: (1) adaptive-

resolution techniques, allowing us to probe features of arbitrary size, and (2) optimal filters,

which provide the best possible sensitivity for detecting candidate signatures. We conclude that

the WMAP 7-year data do not favor the addition of either cosmic textures or bubble collisions

to ΛCDM, and place robust constraints on the predicted number of such sources. The expected
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numbers of bubble collisions and cosmic textures on the CMB sky are constrained to be fewer

than 4.0 and 5.2 at 95% confidence, respectively.

5.2 Introduction

The cosmic microwave background (CMB) radiation provides our best picture of the primordial

universe, and therefore the best set of observations available to confront theories of the early

universe with data. The angular power spectrum of the CMB, together with complementary

datasets (e.g., from large-scale structure and supernova surveys), has established the standard

model of cosmology, a spatially flat universe dominated by cold dark matter (ΛCDM). However,

many theories of high-energy physics predict that there should be deviations from the isotropic

and purely Gaussian density fluctuations predicted by ΛCDM. In this paper, we are concerned

with the question of how to optimally test theories that predict spatially-localized sources em-

bedded in the CMB. We present a statistical formalism and a set of approximations that are

implemented in a full analysis pipeline to construct the posterior probability distribution over

the parameters describing a class of theories. We implement a two-step algorithm in which we

first locate the most promising candidate signatures, and then use the information about the

number, location, and properties of the candidate sources to construct an approximation to the

full posterior probability distribution.

To illustrate the application of this pipeline, we focus on two signatures that are predicted

by theories with spontaneous symmetry breaking giving rise to phase transitions in the early

universe: cosmic textures and cosmic bubble collisions. Cosmic textures are a type of topological

defect produced when a non-Abelian global symmetry is broken (Turok, 1989). Textures are not

stable, but instead undergo collapse as they come within the expanding cosmological horizon,

eventually unwinding into scalar radiation (Turok, 1989; Turok and Spergel, 1991; Spergel et al.,

1991; Pen et al., 1994; Turok and Spergel, 1990). CMB photons passing through a collapsing

texture will be red-shifted, while those passing through an exploding texture will be blue-shifted,

giving rise to a set of features in the CMB (Turok and Spergel, 1990). Cosmic bubble collisions

are predicted by theories of eternal inflation, where our observable universe is postulated to

be embedded inside one bubble among many, formed during a first-order phase transition out

of an inflating false vacuum (for a review of eternal inflation see, e.g., Aguirre (2008); Guth

(2007)). The density perturbations induced by collisions between our bubble and others can

lead to localized features in the CMB, providing an observable signature of the dynamics of

eternal inflation (Aguirre et al., 2007).

In previous work, we presented the first constraints on theories giving rise to cosmic bubble
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collisions (Feeney et al., 2011a,b) and the first full-sky constraints on cosmic textures (Feeney

et al., 2012). The present paper focuses on:

• Generalizing the statistical formalism and approximation scheme used in Feeney et al.

(2011a,b) and Feeney et al. (2012);

• Implementing an adaptive-resolution analysis, allowing us to overcome the limitations

in Feeney et al. (2011a,b) on the size of candidate bubble collisions;

• Including and refining the candidate detection scheme using optimal filters presented

in McEwen et al. (2012);

• Performing a complete suite of tests of the formalism, approximations, and analysis pipeline;

• Performing a new analysis of the posterior probability distribution for bubble collisions and

cosmic textures that includes new candidates from the optimal filtering step in combination

with the upgraded adaptive-resolution analysis pipeline.

The paper is structured as follows. In Sec. 5.3, we outline the formalism and approxi-

mations we use. In Sec. 5.4, we describe the theoretical predictions for cosmic textures and

bubble collisions. The algorithm used to calculate the approximated posterior is described in

Secs. 5.5-5.6 and tested in Secs. 5.7 and 5.8. A null test of the pipeline is carried out in Sec. 5.9

before the pipeline is applied to CMB data from the Wilkinson Microwave Anisotropy Probe

(WMAP) (Bennett et al., 2003a) in Sec. 5.10. The results of this analysis are compared with

previous analyses in Sec. 5.11, and our conclusions are summarised in Sec. 5.12.

5.3 Hierarchical Bayesian source detection formalism

5.3.1 The theory

The observed fluctuations in the CMB can be modeled as the realization of a random field on

the sphere, which, under the assumption of isotropy and Gaussianity, is completely characterized

by its angular power spectrum. A number of extensions of this model predict various popula-

tions of distinct sources embedded in the background random field. This includes astrophysical

sources such as clusters of galaxies (which affect the CMB through the Sunyaev-Zel’dovich ef-

fect (Sunyaev and Zeldovich, 1972)), and primordial sources such as cosmic textures and cosmic

bubble collisions. We restrict our attention to cases where the temperature anisotropies can be

described as

∆T

T
(θ, φ) = δ(θ, φ) + n(θ, φ) +

Ns∑

i=1

ti(θ, φ). (5.1)
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Here, δ(θ, φ) is a realization of the background random field, n(θ, φ) describes the instrumental

noise as well as residual foregrounds, and ti(θ, φ) are templates for the temperature anisotropies

laid down by each of Ns distinct sources. All terms other than the instrumental noise are assumed

to include the effects of a finite instrumental beam. Such a theory can be described by

• Model parameters: This includes the parameters describing the background random

field and the source templates.1 The background random field is described by the param-

eters of ΛCDM, which we denote by the vector mΛCDM. These parameters include: the

fraction of energy density in baryons, Ωbh
2; cold dark matter, ΩCDMh

2; and dark energy,

ΩΛ; the scalar spectral index, ns; the primordial scalar amplitude, As; and the optical

depth to reionization, τ . Modeling the instrument gives a characterization of the expected

noise properties. No model of the Galactic foreground residuals is available for the dataset

considered in this analysis, and we therefore resort to null tests of simulations including

foreground residuals in order to determine their effects (although a model of the foreground

residuals could, in principle, be included in the formalism).

It is convenient to treat the extension hypothesis as a hierarchical Bayesian model (e.g. Loredo

(2012)) in which the population level parameters are considered separately from the lower-

level parameters describing the individual sources. The parameters describing the tem-

plates are hence divided into two categories: global parameters, m0, which describe the

source population as a whole; and local parameters, mi, characterizing individual sources.

Any model will possess at least one global parameter – N̄s, the expected total number of

detectable sources – in addition to any properties common to all templates. Further, any

model will possess at least one set of local parameters: {θi, φi}, the central position of the

ith template. Other properties that can differ from template to template (e.g., size) are also

classified as local parameters. Global template parameters, in addition to the parameters

of ΛCDM, can be thought of as labeling different theories, characterizing the background

cosmology and the type of source. Local parameters characterize the properties of sources

in the context of a specific theory.

• Theoretical priors: An important component of the theory is the prior probability

distribution over the model parameters. In principle, a complete theory of cosmology would

provide an explanation for the observed properties of the population of sources and the

background random field. In general such a full theory is not available. To make progress,

we will assume that there are no correlations between the properties of the background

1The formalism could also be extended to allow for marginalization over any imperfectly known experimental
parameters. For simplicity, we assume that the parameters of the WMAP experiment are perfectly known.
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field and the properties of the sources, rendering the prior separable. In the context of a

specific theory of sources, the prior over local parameters can be fully determined. The

priors over the parameters of ΛCDM and the global template parameters are somewhat

less certain in the absence of a theoretical construction in which different models can be

compared.2 A reasonable assumption is therefore to use an uninformative prior, which

assigns equal probability to all possibilities. The use of uninformative priors requires care

to be taken when defining the prior range, and will be discussed in later sections.

• Model statistics: Given a set of model parameters, it is necessary to understand how

particular realizations of the temperature anisotropies are determined. For the sources,

this is most efficiently encoded in the theoretical prior over local model parameters of

the templates. For the background random field and instrumental noise, this is most

efficiently encoded in the two-point correlation function. Under ΛCDM, for perfect data,

the correlation in the temperature between two positions on the sphere is given by

Cij ≡ C(θij) =
∑

`

2`+ 1

4π
C`(mΛCDM)P`(cos(θij)), (5.2)

where θij is the angular distance between two points on the sphere labeled by i and j,

and C`(mΛCDM) is the angular power spectrum, which is dependent on the choice of

parameters mΛCDM. The characterization of the instrumental noise and beam depends on

the experiment in question, and will be described in greater detail below for the WMAP

experiment.

5.3.2 The full posterior

Having fully specified the theory, we can now ask how to test it. Our goal is to construct the

posterior probability distribution over the global source parameters, given a dataset d consisting

of pixelized temperature measurements covering a solid angle Ωobs = 4πfsky of the sky (and,

optionally, any statistics derived from them). Bayes’ theorem gives the posterior as

Pr(m0|d, fsky) =
Pr(m0) Pr(d|m0, fsky)

Pr(d|fsky)
, (5.3)

where Pr(m0) is the prior distribution on the global parameters, m0, Pr(d|m0, fsky) is the

likelihood of getting the observed data, and Pr(d|fsky) ensures that the posterior is normalized.

2Of course, the best example is the eternally inflating multiverse, in which regions with diverse physical
properties are sampled. Defining the theoretical prior in this case is difficult due to the infinite number of regions
that must be compared; this is the “Measure Problem” of eternal inflation (see Freivogel (2011) and Salem (2012)
for recent reviews).
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The posterior can also be used to derive summary statistics, such as confidence intervals on

the global model parameters. The quantity N̄s is always included in the set of global model

parameters m0, and ΛCDM is specified by N̄s = 0. Therefore, we can also perform model

selection by comparing the posterior probability of a model for which N̄s = 0 and one which

admits N̄s > 0.

The model likelihood Pr(d|m0, fsky) is obtained by marginalizing over:

1. The parameters of ΛCDM;

2. The actual number of sources present on the observable sky (given the expected number of

sources, N̄s, the actual number is a realization of a Poisson-like process of mean fskyN̄s);

3. The local template parameters.

Unpacking the model likelihood, we therefore have:

Pr(d|m0, fsky) =

∞∑

Ns=0

(fskyN̄s)
Nse−fskyN̄s

Ns!
(5.4)

×
∫

dmΛCDMPr(mΛCDM)

∫
dm1 . . . dmNs

Pr(m1, . . .mNs
)

×Pr(d|Ns, fsky,mΛCDM,m0,m1, . . .mNs),

where Pr(mΛCDM) is the prior over the parameters of ΛCDM, Pr(m1, . . .mNs) is the prior over

the local model parameters for Ns sources, and Pr(d|Ns, fsky,mΛCDM,m0,m1, . . .mNs
) is the

likelihood. For measurements of the CMB temperature anisotropies under the assumption of

ΛCDM as the background random field, the likelihood is written as

Pr(d|Ns, fsky,mΛCDM,m0,m1, . . .mNs) =
e−(d−

∑Ns
i=1 t(mi))C

−1
(d−

∑Ns
i=1 t(mi))

T/2

(2π)npix/2|C| , (5.5)

where C is the pixel-pixel covariance matrix including a ΛCDM CMB signal and instrumental

noise.

One must evaluate Eq. 5.5 in order to construct the full posterior, Eq. 5.3. Evaluating this

expression is impossible, as it requires marginalizing over a formally infinite dimensional param-

eter space. Even if the parameter space were finite, the enormous size of modern CMB datasets,

such as those produced by the WMAP or Planck (Planck Collaboration et al., 2011) experiments,

makes inverting the (non-diagonal) covariance matrix prohibitively expensive. Nevertheless, it

is possible to apply a controlled and testable sequence of approximations to estimate the full

posterior, as we now describe.
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5.3.3 Approximation to the posterior

In order to proceed, we must construct a suitable approximation to the model likelihood. Let

us first deal with the cosmological parameters mΛCDM. We assume that our inferences on mi

do not vary significantly for the range of ΛCDM parameters allowed by current cosmological

data. Under this assumption, we can proceed as if Pr(mΛCDM) = δ(mΛCDM − m̄ΛCDM), where

m̄ΛCDM is the best-fit concordance cosmological model. Performing the integral over mΛCDM

we obtain the approximation to the model likelihood

Pr(d|m0, fsky) '
∞∑

Ns=0

(fskyN̄s)
Nse−fskyN̄s

Ns!
Pr(d|Ns), (5.6)

where we define the helpful short-hand

Pr(d|Ns) ≡
∫

dm1 . . . dmNs
Pr(m1, . . .mNs

)Pr(d|Ns, fsky, m̄ΛCDM,m0,m1, . . .mNs
). (5.7)

In a similar spirit, if we knew something about the dependence of the likelihood on the local

model parameters, it would be possible to approximate the remaining integrals. This is depicted

schematically in Fig. 5.1. To see how this works in detail, let us begin with a particular example.

Imagine that there is a region of the sky which has been judged by some independent method to

be a good candidate source. We can segment the data into a “blob”, containing the candidate

source, and the rest of the sky. The details of the size and shape of the blob are treated in

abstract here, and will depend on the particular theory of the sources being tested. We can now

evaluate the sum over Ns in Eq. 5.6 term by term. The likelihood in the first term, for Ns = 0,

is simply given by

Pr(d|Ns = 0) =
1

(2π)npix/2|C|e
−dC−1

dT/2, (5.8)

which is the likelihood for the null hypothesis, i.e., no sources. Here, and in what follows, C is

evaluated at the best fit values m̄ΛCDM. Moving on to the Ns = 1 term, we must evaluate the

integral over m1. Recall that the local model parameters always include the location at which

the template is centered and, if relevant, its size. We can therefore separate the integral over m1

into the region inside the blob containing our candidate source, which we will refer to as region

b, and the rest of the sky, which we will refer to as region b̄:

Pr(d|Ns = 1) =

∫

b

dm1Pr(m1)
1

(2π)npix/2|C|e
−(d−t)C−1

(d−t)T/2

+

∫

b̄

dm1Pr(m1)
1

(2π)npix/2|C|e
−(d−t)C−1

(d−t)T/2. (5.9)
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likelihood zero

likelihood 
nonzero

Figure 5.1: A schematic depicting the approximation scheme we employ. By locating a set of
candidate sources, it is possible to determine in which regions of parameter space the likelihood
function is appreciably different from zero. Eq. 5.7 can be approximated by integrating over
only those regions where the likelihood is large. This in addition collapses the sum in Eq. 5.6 to
a finite number of terms. Finally, we neglect correlations of the random Gaussian background
CMB between pixels inside and outside each blob.

If there are no sources in the region b̄, then we can approximate the likelihood by integrat-

ing over region b alone. The accuracy of this approximation depends on our ability to locate

the candidate source; however, it will always provide a lower (i.e., conservative) bound on the

likelihood (since we are integrating a positive-definite function). We therefore have

Pr(d|Ns = 1) '
∫

b

dm1Pr(m1)
1

(2π)npix/2|C|e
−(d−t)C−1

(d−t)T/2. (5.10)

While we have reduced the parameter space over which we must integrate, this expression is still

numerically intractable for large datasets, since we must invert the large, generally non-diagonal

covariance matrix. To make progress, we must make a few further approximations. Expanding

the exponential in the likelihood, we have

e−(d−t)C−1
(d−t)T/2

(2π)npix/2|C| =
1

(2π)npix/2|C|e
−(di−ti)C−1

ij (dj−tj)/2× e−dαC−1
αβ dβ/2× e−(di−ti)C−1

iα dα (5.11)

where the indices i and j refer to pixels in region b while the indices α and β correspond to

pixels in region b̄. We have used the fact that the template vanishes in region b̄. Re-arranging,
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we obtain

e−(d−t)C−1
(d−t)T/2

(2π)npix/2|C| =
e−(di−ti)C−1

ij (dj−tj)/2

e−diC
−1
ij dj/2

×
(

1

(2π)npix/2|C|e
−dC−1

dT/2

)
×
(
etiC

−1
iα dα

)

' e−(d−t)C(bb)−1
(d−t)T/2

e−dC
(bb)−1

dT/2
×
(

1

(2π)npix/2|C|e
−dC−1

dT/2

)
×
(
etiC

−1
iα dα

)

' e−(d−t)C(bb)−1
(d−t)T/2

e−dC
(bb)−1

dT/2
× Pr(d|Ns = 0). (5.12)

In these expressions, C(bb) is the covariance matrix constructed using only the data in region b.

We have made two approximations in deriving this final expression. First, we have neglected

correlations between the template and the data in region b̄, which is equivalent to assuming

e2tiC
−1
iα d

T
α ' 1. (5.13)

This is justified in the limit where the inverse covariance falls off sufficiently fast with angular

distance. Our second approximation was to assume that we can make the replacement

(di − ti)C−1
ij (dj − tj)→ (d− t)C(bb)−1

(d− t)T/2, (5.14)

which is justified to the extent that the subgroup of the inverse of the full covariance matrix

corresponding to pixels in region b can be approximated as the inverse of a covariance matrix

defined only using pixels in region b. For a diagonal covariance, this is exact. For the non-

diagonal covariance matrix of ΛCDM it is only approximate. We comment on the validity of

these approximations under ΛCDM in Section 5.8.

Finally, performing the integral over m1 in Eq. 5.10, we obtain

Pr(d|Ns = 1) ' Pr(d|Ns = 0) ρb(m0), (5.15)

where the patch-based evidence ratio ρb is given by

ρb(m0) ≡
∫
b

dm1Pr(m1)e−(d−t)C(bb)−1
(d−t)T/2

e−dC
(bb)−1

dT/2
. (5.16)

This is a measure of how much better the theory with a template at fixed m0 fits the patch of

data than the theory with only the random field.

Now, we evaluate the two-source term. Again, we approximate the full integral as the integral
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over region b alone. This yields

Pr(d|Ns = 2) =

∫

b

∫

b

dm1dm2Pr(m1)Pr(m2)
e−(d−t(m1)−t(m2))C−1

(d−t(m1)−t(m2))T/2

(2π)npix/2|C| . (5.17)

Making the same approximation about the covariance matrix as above, we have

Pr(d|Ns = 2) ' Pr(d|Ns = 0) (5.18)

×
∫
b

∫
b

dm1dm2Pr(m1)Pr(m2)e−(d−t(m1)−t(m2))C(bb)−1
(d−t(m1)−t(m2))T/2

e−dC
(bb)−1

dT/2
.

If there is in fact only a single source in region b, then the addition of another template will

not increase the likelihood. In effect, we would be trying to fit a single feature with a template

possessing twice the number of parameters (m1 and m2). This will introduce a natural “Occam

factor” that favors the simpler model (i.e., the model with one template). As a concrete example,

assume that the source location is the only local model parameter. If the source can be located

anywhere on the sky with equal probability, the theory prior is simply

Pr(mi) =
1

4π
. (5.19)

In the case where the likelihood function is roughly equal for all positions inside b, with the solid

angle contained in b given by Ωb, and there is no improvement from adding a second template,

the relative size of the Ns = 1 and Ns = 2 terms can be estimated as

Pr(d|Ns = 1)

Pr(d|Ns = 2)
' 4π

Ωb
. (5.20)

Assuming the blob does not cover the entire sky, this is always larger than one. Subsequent

terms in the Ns expansion will be penalized by higher powers of this ratio. While this is a toy

model, this property is expected to hold generally.

For a single blob, we can therefore approximate the full-sky posterior Eq. 5.3 as

Pr(m0|d, fsky) ' Pr(m0) Pr(d|Ns = 0) e−fskyN̄s
(
1 + (fskyN̄s) ρb(m0)

)

Pr(d|fsky)
, (5.21)

where

Pr(d|fsky) ≡
∫

dm0Pr(m0)e−fskyN̄s
(
1 + (fskyN̄s) ρb(m0)

)
(5.22)

is the evidence which ensures Pr(m0|d, fsky) is normalized to unity. Recall that N̄s is included

in the vector of parameters m0.
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We now move on to discuss the general case, where there are Nb blobs, labelled b1 . . . bNs
,

identified as containing a candidate source. We assume that the blobs in question do not overlap.

For Nr = Nb + 1 regions on the sky, making the approximation that the template likelihood is

small when evaluated outside a blob and neglecting correlations between blobs, we obtain for

the general case

Pr(d|Ns) =





0, if Ns > Nb,

Pr(d|Ns = 0)
∑Nb

b1,b2,...,bNs=1 ∆b1b2...bNs
∏Ns

s=1 ρbs(m0), if Ns ≤ Nb.

(5.23)

The quantity ∆b1b2...bNs is one when all indices take distinct values and zero otherwise: the sum

hence generates all permutations of Ns sources located in Nb blobs, assuming no more than one

source per blob. If there are fewer blobs on the sky than proposed sources, then the likelihood is

very small: this would involve fitting more than one template within a single blob, and incurring

the penalisation previously discussed. If there are at least as many blobs as proposed sources,

then the likelihood takes the form of a sum that includes every possible association of the Ns

sources with the Nb blobs, provided that no two sources are matched to the same blob.

Substituting Eq. 5.23 into Eq. 5.6, the expression for the approximation to the full posterior

is given by

Pr(m0|d, fsky) ' Pr(m0) Pr(d|Ns = 0)

Pr(d|fsky)
e−fskyN̄s (5.24)

×
Nb∑

Ns=0

(fskyN̄s)
Ns

Ns!

Nb∑

b1,b2,...,bNs=1

∆b1b2...bNs

Ns∏

s=1

ρbs(m0).

Eq. 5.24 is the main result of this calculation, from which all following results are derived. In

the limit of a single isolated observation, Eq. 5.24 reproduces the Bayesian source detection

formalism developed in Hobson and McLachlan (2003) and Hobson et al. (2010).

5.4 Sources

In this paper, we consider two theories that give rise to localized sources in the CMB: cosmic

bubble collisions in the eternal inflation scenario and cosmic textures. For bubble collisions, the

only global parameter is N̄s, and the final result of the analysis is a one-dimensional posterior

probability distribution. The first analysis of cosmic bubble collisions using a variant of the

approximation scheme outlined in the previous section was presented in Feeney et al. (2011a,b),

where, in addition to the location, three local model parameters (size, edge discontinuity, and

139



amplitude) were included. Cosmic textures have two global parameters: N̄s and a measure of

the symmetry breaking scale ε, and therefore the final product is a two-dimensional posterior

probability distribution. An analysis of textures, which also used a variant of the approximation

scheme outlined above, was presented in Feeney et al. (2012). In this study a model of textures

with one local parameter (size) in addition to the position was considered. Previous work on

testing for the signature of textures in the CMB was presented in Cruz et al. (2005), Cruz et al.

(2007), Cruz et al. (2008), Cruz et al. (2010) and Vielva et al. (2011). Below, we outline our

models of these two types of sources, including the prior probability distribution on the local

model parameters. For bubble collisions, we update the model assumptions of Feeney et al.

(2011a,b) in light of improved theoretical understanding, and remove the edge discontinuity

parameter from our analysis.

5.4.1 Bubble collisions

For an overview of the theory of eternal inflation and the observable effects of bubble collisions,

we refer the reader to the reviews Aguirre (2008) and Aguirre and Johnson (2009). For a detailed

discussion of the expected signature of bubble collisions in the CMB, we refer the reader to Chang

et al. (2009), Feeney et al. (2011a), Czech et al. (2010), Gobbetti and Kleban (2012) and Kleban

et al. (2011); here, we provide only a brief overview.

Based on the symmetry of the bubble collision spacetime, the existence of a causal boundary

splitting the bubble interior into regions affected and not affected by a collision event, and the fact

that a bubble collision is a pre-inflationary relic, the most general template for the temperature

fluctuation caused by a single bubble collision is given by (Chang et al., 2009; Feeney et al.,

2011a,b)

t(θ, φ) =

(
zcrit − z0 cos θcrit

1− cos θcrit
+

z0 − zcrit

1− cos θcrit
cos θ

)
Θ(θcrit − θ), (5.25)

where θcrit is the angular scale of the source, corresponding to the causal boundary of the collision

event, z0 and zcrit are the amplitudes at the center and edge of the template, Θ is the Heaviside

step function, and we have centered the template on the Galactic north pole. In the limit of

small amplitude, this is an additive contribution to the CMB temperature anisotropies as in

Eq. 5.1. Theoretical work (Gobbetti and Kleban, 2012; Kleban et al., 2011) which appeared

subsequent to the previous analysis suggests that there is no discontinuity in temperature at the

causal boundary, and we therefore restrict our attention to zcrit = 0.

The bubble collision model contains only one global parameter, the expected number of

detectable sources N̄s. This is partially a function of the properties of the potential sourcing

inflation, and as such is impossible to predict without a model for the potential. In the context
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of an inflationary landscape, N̄s can be considered as a continuous parameter with some prior

distribution reflecting the typical vacua produced, but without a measure for the landscape it

is difficult to estimate even an order of magnitude for this number. It may even be quite likely

that N̄s � 1, in which case the approximation of looking for widely separated sources is not

valid; see Kozaczuk and Aguirre (2012) for a discussion of the observational signatures in this

case. In the absence of a detailed theory, we assume that N̄s can take values of O(1), and set

N̄s to be uniform in the range 0 ≤ N̄s ≤ 10; as we shall see, this parameter is constrained by

data, and the precise choice of upper limit has no effect on the analysis. In this model, ΛCDM

corresponds to N̄s = 0.

The local parameters are the collision signature’s central amplitude, z0, size, θcrit, and lo-

cation, {θ0, φ0}. The modulations are equally likely to be hot or cold and are isotropically

distributed across the sky. Theory does not fix the expected amplitude of the collisions, so we

assume that the amplitude is uniform in the range −10−4 ≤ z0 ≤ 10−4 (as stronger collisions

would have been obvious in previous CMB data). Neglecting the back-reaction of the colli-

sion on the geometry of the bubble interior, the distribution of source sizes is proportional to

sin θcrit (Aguirre et al., 2007; Aguirre and Johnson, 2008; Freivogel et al., 2009; Aguirre and

Johnson, 2009). Further assuming no correlation between the various local parameters, the final

normalized prior on the local parameters is

Pr(m1) = Pr(z0) Pr(θ0, φ0) Pr(θcrit) =
1

2× 10−4

(
sin θ0

4π

)(
sin θcrit

cos θmin
crit − cos θmax

crit

)
, (5.26)

where 0 ≤ θ0 ≤ π, 0 ≤ φ0 < 2π, and the extrema of the size distribution, {θmin
crit , θ

max
crit } are chosen

such that the bubble collisions are detectable. The lower limit, θmin
crit = 2◦, stems from the fact

that the CMB contains considerable power on the degree-scale, greatly increasing the difficulty

of detection. The observable signature of a bubble collision with θcrit larger than the upper limit,

θmax
crit = 90◦, would be indistinguishable from the signature of a collision of size 180◦ − θcrit.

5.4.2 Cosmic textures

For a detailed discussion of the production, evolution, and observational signature of cosmic

textures we refer the reader to the original literature (Cruz et al., 2007; Pen et al., 1994; Spergel

et al., 1991; Turok, 1989; Turok and Spergel, 1990, 1991). In brief, CMB photons passing

through a collapsing or exploding texture will be red- or blue-shifted, producing an azimuthally
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symmetric feature on the CMB sky of angular size θcrit with temperature profile of the form

t(θ, φ) =
(−1)p ε√

1 + 4
(

θ
θcrit

)2
, θ ≤ θ∗; t(θ, φ) =

(−1)pε

2
exp

(
− (θ2 − θ2

∗)

2θ2
crit

)
, θ > θ∗; (5.27)

where the amplitude ε = 8π2Gη2 depends on the scale of symmetry breaking, η, θcrit is the size

of the texture, θ∗ =
√

3θcrit/2, p = {0, 1} and the template is centered at the Galactic north

pole.

Assuming that all textures are produced in a single symmetry-breaking phase transition, the

texture model has two global parameters: the dimensionless symmetry-breaking scale ε and the

expected number of detectable sources N̄s. Texture unwinding events produce features that all

have the same amplitude on the CMB sky. The total expected number of unwinding events

depends on the particular model giving rise to textures. Simulations (Cruz et al., 2007) of SU(2)

textures indicate that we can expect to have causal access to ∼ 7 textures with θcrit > 2◦ in

the CMB; the precise number of detectable unwinding events further depends on our particular

realization of the background CMB, the dominant source of noise in the analysis. We adopt a

uniform prior on N̄s between 0 ≤ N̄s ≤ 10 to encode our ignorance of the precise theory and the

effect of our CMB realization on detectability. Again, we shall see that this parameter is con-

strained by data, and thus the choice of upper limit has no effect on the analysis. Requiring that

the symmetry-breaking scale for textures is below the scale of cosmological inflation (bounded to

be lower than ∼ 1016 GeV by the absence of observed B-mode polarization), we place an upper

bound on ε of 10−4. We assume a uniform prior on ε down to 2.5× 10−5, which corresponds to

the estimated detection limit of our pipeline (details of which can be found in Sec. 5.5). Under

the assumption of a uniform prior, the posterior is simply proportional to the likelihood; results

for a different prior can be obtained easily by re-weighting the posterior.

The local parameters for textures are the size, θcrit, location, {θ0, φ0} and p, which specifies

whether the texture is hot or cold. Textures are expected to be isotropically distributed over

the sky, with a distribution of sizes proportional to θ−3
crit (see Cruz et al. (2007) for a derivation),

and so the normalized prior on the local texture parameters is

Pr(m1) =
sin θ0

4πθ3
crit

(
1

(2◦)
2 −

1

(50◦)
2

)−1

, (5.28)

where 0 ≤ θ0 ≤ π, 0 ≤ φ0 < 2π, and we take 2◦ ≤ θcrit ≤ 50◦. The lower limit on θcrit results

from the large power on degree scales in the CMB; the upper limit stems from the fact that

templates with θcrit > 50◦ are large enough to cover the whole sky and overlap themselves,
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rendering Eq. 5.27 invalid. To marginalize over the different signs, we can simply sum the

likelihoods evaluated at the same magnitude of ε, but where the template takes opposite sign.

We now describe our implementation of the formalism derived in Sec. 5.3. There are two

main steps in the algorithm – candidate-source detection and patch-based evidence calculation –

in which the non-zero regions of the likelihood function are first estimated and then evaluated. In

the first step, optimal filters matched to the signals of interest are used to identity the positions

and sizes of the most likely sources in the dataset. We describe this procedure in Sec. 5.5

below. In the second step, the patch-based evidence ratios, Eq. 5.16, are calculated for each

candidate using the nested sampler MultiNest (Feroz and Hobson, 2008; Feroz et al., 2009),

before combining to form the posterior, Eq. 5.24, on the global model parameters. We describe

this part of the calculation in Sec. 5.6.

5.5 Candidate detection with optimal filters

In order to effectively approximate the full posterior distribution describing the population of

candidate sources, it is necessary to first locate the regions that provide significant contributions

to the likelihood. We follow the approach of McEwen et al. (2012), using optimal filters defined

on the sphere that are matched to the source profile of either bubble collision or texture signa-

tures. First, we construct optimal matched filters for the purpose of detecting candidate sources

embedded in full-sky WMAP 7-year data and assess their performance. Second, we briefly de-

scribe the optimal-filter-based algorithm for detecting sources of unknown and differing sizes,

highlighting differences between the bubble collision and texture cases. Third, we calibrate the

algorithm on an end-to-end simulation of WMAP observations, before assessing its sensitivity.

5.5.1 Optimal bubble collision and cosmic texture filters

We construct two sets of matched filters: one set that enhances the contributions of bubble colli-

sion signatures and one set that enhances the contributions of texture signatures. The matched

filters are constructed to enhance the source profile in a specified stochastic background. A

stochastic background of CMB fluctuations is assumed, characterized by the lensed ΛCDM

power spectrum that best fits the WMAP 7-year data, baryon acoustic oscillations and super-

novae observations (Larson et al., 2011) (hereafter referred to as the lensed WMAP7+BAO+H0

power spectrum). The bubble collision and texture source profiles for which we search are rel-

atively large-scale; thus we consider spherical harmonics up to the band-limit `max = 256 only.

Since we eventually apply these filters to W-band WMAP observations, we assume observations
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(a) θcrit = 5◦ (b) θcrit = 20◦ (c) θcrit = 60◦

Figure 5.2: Matched filters optimized to bubble collision signatures of varying size embedded in
a ΛCDM CMB background.

are made in the presence of a Gaussian beam of full-width-half-maximum FWHM = 13.2 arcmin-

utes and isotropic white noise of N` = 0.02 µK2. The optimal matched filters are constructed

in harmonic space: thus the assumption of an azimuthally-symmetric beam profile and isotropic

noise simplifies their construction and application considerably, while remaining highly accurate

for the relatively low band-limit considered. Once the source profile and stochastic background

are defined, the filters are constructed on the sphere as outlined by McEwen et al. (2008).

In Fig. 5.2 and Fig. 5.3 we show the matched filters recovered for the bubble collision and

texture profiles, respectively, for a range of source sizes. Notice that the bubble collision fil-

ters on smaller scales contain a central broad hot region to enhance the main bubble collision

contribution, surrounded by hot and cold rings to enhance the transition from the collision to

the background. On larger scales, however, the matched filters contain only the hot and cold

rings that enhance the transition. Since the CMB has more power on large scales, the matched

filters on large scales do not respond to the large-scale features of the bubble collision signature

but rather the transition region near the location where the template goes to zero. The tex-

ture source profile has a smooth, Gaussian transition to the background, and consequently the

matched filters recovered for textures contain only a central broad region, without any strong

contribution from the perimeter of the profile.

The matched filters constructed are optimal in the sense that no other filter can yield a

greater enhancement of the signal-to-noise ratio (SNR) of the filtered field. It is possible to

calculate analytically the SNR of the filtered field for various filter types, as derived for example

by McEwen et al. (2012). In Fig. 5.4 we plot the SNR computed for bubble collision and texture

profiles for the unfiltered field, for the optimal filters constructed here, and for needlets (Mar-

inucci et al., 2008; Scodeller et al., 2011), which have been used previously to detect candidate

sources (Feeney et al., 2011a,b; Feeney et al., 2012). Note that the lack of a sharp transition

in the texture template means that the SNR for textures are lower than those of bubble colli-
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(a) θcrit = 5◦ (b) θcrit = 10◦ (c) θcrit = 20◦

Figure 5.3: Matched filters optimized to cosmic texture signatures of varying size embedded in
a ΛCDM CMB background.

sions. Nevertheless, it is clear that matched filters yield the highest SNR, in accordance with

expectations.

5.5.2 Candidate object detection algorithm

Although we have constructed optimal filters for a range of source sizes, we have not yet ad-

dressed the problem of detecting sources of unknown and differing sizes. We adopt the algorithm

described in detail by McEwen et al. (2012) for this purpose, which we review here briefly. First,

matched filters are constructed for a grid of source sizes R ∈ {θkcrit}
Nθcrit
k=1 . All filters are then

applied to the full-sky observed data by convolving the matched filter kernel with the observed

data, which may be computed efficiently in harmonic space (see e.g. McEwen et al. (2012)).

Significance maps are then computed by normalizing the filtered field to the mean and stan-

dard deviation of filtered fields computed from realizations of the background process (i.e. CMB

fluctuations and instrumental noise) in the absence of sources. The significance maps are then

thresholded (the calibration of threshold levels is discussed below), before potential candidate

sources are found from the localized peaks of the thresholded significance maps. Potential can-

didate sources are eliminated if a stronger source is found on adjacent scales, where the set

of scales adjacent to scale R is defined by the set {Radj ∈ {θkcrit}
Nθcrit
k=1 : |Radj −R| ≤ θadj}, i.e.

where the distance between R and Radj is less than the parameter θadj. Once candidate sources

are detected, the parameters of the source size, location and amplitude are estimated from the

corresponding filter scale, peak position of the thresholded significance map and amplitude of

the filtered field, respectively.

The construction of optimal filters is implemented in the S2FIL code (McEwen et al., 2008)

(which in turn relies on the codes S2 (McEwen et al., 2007) and HEALPix (Górski et al., 2005)),

while the COMB code (McEwen et al., 2008) has been used to simulate bubble collision signatures

145



embedded in a CMB background.3 The candidate object detection algorithm described here is

implemented in a modified version of S2FIL that will soon be made publicly available.

There is no guarantee that the peak in the filtered field across scales will coincide with the

size of the unknown source. Nevertheless, for bubble collision signatures embedded in the CMB

this has indeed been found to be the case (McEwen et al., 2012). For texture profiles, however,

we have found this phenomenon to hold below scales θcrit ∼ 10◦ only. Through numerical

experiments we found that the difference in the behavior of the filtered field between bubble

collisions and textures on large scales is due to the absence of a well-defined transition region

from the source to the background in the texture profile. For large texture sizes, not only is

there no peak in the filtered field at the scale of the unknown source, but the SNR of the filtered

field does not drop off rapidly when applied to nearby scales (Fig. 5.4), as is the case for bubble

collisions. We trivially modify the candidate detection algorithm described above to account for

this behavior. For textures sizes below θcrit = 10◦ we look across adjacent scales as usual to

find the most significant potential candidate source, whereas for sizes above θcrit = 10◦ we do

not (by a judicious choice of the adjacency parameter θadj there is in fact no need to modify the

algorithm, as described below).

Although the candidate detection algorithm considers a grid of candidate scales R, it is

overwhelmingly probable that the signal for any given source peaks at scales between the samples

of the grid. It is thus important to examine how sensitive the matched filters are to small errors

in the source size. In Fig. 5.4 (b) and (d) we plot SNR curves for matched filters constructed

on the grid of candidate scales. For bubble collision profiles, a sharp degradation in the SNR

away from the scale used to construct each filter is clearly apparent. For texture profiles the

degradation is much less pronounced, especially at large scales (as discussed above). Provided

that the θcrit grid is sampled sufficiently densely, the matched filters for both bubble collision

and texture profiles remain effective and are superior to needlets.

5.5.3 Candidate object detection calibrated to WMAP

We define the parameters of the optimal-filter-based candidate object detection algorithm here

and calibrate the threshold levels for WMAP observations. Throughout the calibration we

apply the WMAP KQ85yr7 mask (Gold et al., 2011), since this is the mask adopted when

analysing WMAP data subsequently. We select the less-conservative KQ85 mask so as to reduce

the variance in reconstructing large-scale information masked by the Galactic sky cut (Feeney

et al., 2011c). This choice has the additional advantage of revealing more of the sky and hence

3S2FIL, S2 and COMB are available from http://www.jasonmcewen.org/, while HEALPix is available from http:

//healpix.jpl.nasa.gov/.
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(d) Cosmic textures of unknown source size

Figure 5.4: SNRs of bubble collision (top row) and texture (bottom row) signatures of varying
size with amplitude 100 µK embedded in a ΛCDM CMB background. SNR curves are plotted
for matched filters (solid blue curve), needlets (Marinucci et al., 2008) with scaling parameter
B = 1.8 for a range of needlet scales j (dot-dashed black curves) and for the unfiltered field
(dashed red curve). In panels (b) and (d) SNR curves for the matched filters constructed at a
given scale and applied at all other scales are also shown (thin solid blue curves). The scale for
which the filters are constructed may be read off the plot from the intersection of the heavy and
light solid blue curves. Provided the θcrit grid is sampled sufficiently densely, the matched filters
remain superior to needlets.
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increasing the number of candidates. The Bayesian stage of the pipeline will assess the overall

evidence for the source model in each candidate region: if any candidate is found to contribute

evidence in favor of the source model, then it will be examined closely for frequency-dependence

signifying potential foreground contamination.

For bubble collisions we consider the grid of scales set out in McEwen et al. (2012), as

defined in Table 5.1 (left). The θcrit prior range is smaller for textures than for bubble collisions

– the texture profile extends well beyond θcrit, covering the full sky for θcrit & 50◦ – and hence

for textures we consider a smaller grid of scales, also defined in Table 5.1 (right). Since we

found the matched filters for textures to be sensitive to a large range of nearby scales, we

nevertheless remain sensitive to the full prior range of sizes. The SNR curves for the matched

filters constructed for these scales for bubble collisions and textures are shown in Fig. 5.4 (b)

and (d). These grids of scales are thus sufficiently sampled to ensure that the matched filters

remain effective for scales between the samples of the grid. We set the adjacency parameter to

θadj = 5◦ for both bubble collisions and textures. For textures this ensures that we look across

scales for sizes below θcrit = 10◦ but not above, whereas for bubble collisions we always look

across adjacent scales.

We use 3,000 Gaussian CMB simulations to calculate the mean and standard deviation of the

filtered field at each scale in the absence of sources, in order to compute significance maps. For

these simulations, and for the WMAP data analysed subsequently, we perform Wiener filtering

to recover spherical harmonic coefficients with ` ≤ 10 from masked CMB maps (Feeney et al.,

2011c), where we adopt a Gaussian prior for the harmonic coefficients specified by the lensed

WMAP7+BAO+H0 power spectrum. Note that this differs from the maximum likelihood recon-

struction (de Oliveira-Costa and Tegmark, 2006) of harmonic coefficients performed by Feeney

et al. (2011a,b) and Feeney et al. (2012) and the cut-sky estimation performed by McEwen et al.

(2012). This can alter the spherical harmonic coefficients recovered on large scales, and thus the

detected candidate sources, in a non-negligible manner. However, Wiener filtering should give

the most reliable reconstruction of the large-scale harmonic modes (Feeney et al., 2011c).

Finally, we calibrate the threshold levels NσR applied to the significance maps for each filter

scale from a realistic WMAP simulation that does not contain embedded sources. The thresholds

are chosen to allow a manageable number of false detections while remaining sensitive to weak

sources. For this calibration we use a complete end-to-end simulation of the WMAP experiment

provided by the WMAP Science Team (Gold et al., 2011). The temperature maps in this

simulation are produced from a simulated time-ordered data stream, which is processed using

the same algorithm as the actual data. The data for each frequency band are obtained separately
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θcrit(
◦) NσR

1 4.25
1.5 4.25
2 4.25
3 4.00
4 4.00
5 4.00
6 4.00
7 4.00
8 4.00
9 3.75
10 3.75
12 3.75
14 3.75
16 3.75
18 3.50
20 3.50
22 3.50
24 3.50
26 3.50
28 3.25
30 3.25
35 3.25
40 3.25
45 3.25
50 3.25
55 3.25
60 3.25
65 3.25
70 3.25
75 3.25
80 3.00
85 3.00
90 3.00

θcrit(
◦) NσR

1 4.25
1.5 4.00
2 3.75
3 3.50
4 3.50
5 3.25
6 3.00
7 3.00
8 3.00
9 2.75
10 2.75
20 2.50

Table 5.1: The θcrit grid and threshold levels NσR adopted for the optimal-filter-based candidate
source detection algorithm for bubble collisions (left) and textures (right). Threshold levels are
calibrated to the WMAP end-to-end simulation to allow at most three false detections on each
scale.
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using simulated diffuse Galactic foregrounds and CMB fluctuations, and include realistic noise,

smearing from finite integration time, finite beam size, and other instrumental effects. We

use the foreground-reduced W-band simulation for calibration. The threshold levels NσR are

selected to allow at most three false detections on each scale on this simulated map (recall

that detections on one scale can be eliminated by stronger detections made on adjacent scales).

These threshold levels are less conservative that those set by Feeney et al. (2011a,b), Feeney et al.

(2012) and McEwen et al. (2012), in order to increase the number of false detections passed by

the candidate source detection stage of the analysis pipeline and hence improve its sensitivity.

The calibrated threshold levels for both bubble collisions and textures are shown in Table 5.1.

Once candidate sources are detected by the optimal-filter-based detection algorithm, we discard

those objects that are significantly masked. For the WMAP end-to-end simulation, we make 12

false detections of candidate bubble collisions and 4 false detections of candidate textures.

In the analysis of the WMAP end-to-end simulation (and in the analysis of the WMAP data

considered subsequently), some of the bubble collision candidates that we detect differ from

those found with optimal filters previously (McEwen et al., 2012). This is expected since we now

use Wiener filtering to recover spherical harmonic coefficients, have included a more accurate

model of the WMAP noise in the optimal filter construction (noise was neglected previously),

and have reduced the threshold levels in order to increase the sensitivity of the entire pipeline.

Further, the thresholding-based nature of the candidate source detection algorithm means that

small differences in the filtered field can have an impact of the final candidates detected if

regions move below or above the threshold. In the cases where candidates disappeared, we

nevertheless found peaks in the filtered field; these were simply no longer above the threshold or

were eliminated by stronger detections on nearby scales or positions. Given these differences are

due to improvements made to the pipeline, the results given here are to be preferred to those

presented previously.

Following the candidate source-detection stage of the analysis pipeline, we pass to the

Bayesian stage an estimate of the domain of parameter space over which the likelihood is ex-

pected to be non-negligible. These regions of parameter space are estimated from each of the

candidate sources detected. For the size of each source, the relevant region is determined first by

finding the range of nearby filter scales for which significance maps exceed their threshold level at

the source position. This range of scales is extended to the next smallest and largest filter scales

(or the edge of the prior if encountered) to yield an estimate of the range of scales over which the

likelihood is non-negligible. For example, for a bubble collision candidate found to be significant

by the 40◦ and 45◦ optimal filters, we would estimate the likelihood to be non-negligible over
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the range 35 – 50◦. To estimate the integration limits of the central positions for each source,

we first find all pixels within a radius r of the source position estimated by the optimal filters,

where r is 25% of the maximum source size estimated from the previous step. The extrema

{θmin
0 , θmax

0 , φmin
0 , φmax

0 } of these pixels are found, and the source positions are then sampled

from the region defined by θmin
0 ≤ θ0 ≤ θmax

0 , φmin
0 ≤ φ0 ≤ φmax

0 . Tests of these assumptions are

included in the suite of pipeline tests detailed in later sections.

We conclude this section by assessing the level to which the optimal-filter-based candidate

detection algorithm is sensitive for each source type. In previous studies, simulations were

performed for this purpose (Feeney et al., 2011a,b; McEwen et al., 2012). Here we instead

take a probabilistic approach based on the analytic SNRs of the filters computed previously

(see Fig. 5.4). This allows us to probe the source size-amplitude parameter space at higher

resolution and accuracy than would be achievable with modest numbers of simulations (to reach

an equivalent resolution and accuracy through simulations would be extremely computationally

demanding). In Fig. 5.5 we plot the sensitivity of the matched filters constructed for bubble

collisions and cosmic textures. These plots are produced as follows. For each scale θcrit we

compute the source amplitude (z0 for bubbles; ε for textures) that would be required to ensure

that the SNR reaches the threshold specified in Table 5.1. This level defines the 50% completeness

curves shown in Fig. 5.5 since, in the presence of noise, we expect half of the sources with this

amplitude to be detected and half to be missed. Similarly, we compute approximate completeness

curves for one-, two- and three-standard-deviation differences from the 50% completeness curve

(note that the probabilities quoted on each curve are computed assuming a Gaussian distribution

of the filtered field at the source position). For the 50% completeness curve, the bubble collision

matched filters are sensitive to z0 ∼ 10−4.4, while the cosmic texture matched filters are sensitive

to ε ∼ 10−4.2. Note that the sensitivities computed in this manner are similar to those computed

previously through simulations (Feeney et al., 2011a,b; McEwen et al., 2012), both in terms of

the sensitivity levels obtained and the shape of the sensitivity regions. Further, we see that

optimal matched filters are ∼ 1.7 times more sensitive than needlets for detecting bubble collision

signatures, as found previously (Feeney et al., 2011a,b; McEwen et al., 2012).

5.6 Adaptive-resolution evidence calculation

Modern CMB experiments map the sky with extremely high resolution: the beam of the Planck

experiment in the main CMB bands is expected to be ∼ 5′ (Planck Collaboration et al., 2011),

resulting in maps pixelated on the arcminute scale. While this is necessary for pinning down

the secondary CMB anisotropies at small scales, it means that calculating pixel-space covariance
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Figure 5.5: Sensitivity of the optimal-filter-based candidate detection algorithm, with complete-
ness curves plotted for one, two and three standard deviations from the 50% completeness curve.
The completeness curves are computed in the following manner. For each scale θcrit we com-
pute the source amplitude (z0 for bubbles; ε for textures) that would be required to ensure that
the SNR reaches the threshold specified in Table 5.1. This level defines the 50% completeness
curve, since we expect half of the sources with this amplitude to fall below the curve and half
to fall above. Similarly, we compute approximate completeness curves for one-, two- and three-
standard-deviation differences from the 50% completeness curve. The probabilities quoted on
each completeness curve are computed assuming a Gaussian distribution of the filtered field at
the source position.

matrices becomes extremely memory-intensive. We illustrate this point in Fig. 5.6, which shows

the memory needed to calculate covariance matrices from 1◦ to 180◦ in radius at HEALPix

resolutions ranging from Nside = 8 to Nside = 2048 (i.e., Planck resolution).4 It is clear that the

memory costs, which to a good approximation rise as angular radius to the fourth power, make

processing even relatively small patches prohibitive at full Planck resolution.

In previous work (Feeney et al., 2011a,b), we chose to truncate both our patches and the

integration limits of θcrit to the maximum radius invertible with our memory constraints. While

this allowed us to at least partially process almost all features at full WMAP resolution, it

meant that we were unable to probe the large-θcrit region of parameter space for which the prior

for bubble collisions is highest. If we are to do so, it is clear that the input maps must be

processed at degraded resolution: the larger the patch, the lower the resolution at which it can

be processed. The maximum memory accessible per core in this analysis is ∼ 90 GB, which

means that the full-sky covariance matrix can be inverted at Nside = 64: this is therefore the

minimum resolution at which any feature will be processed. The degradation process will now

be described in detail, along with the suite of tests performed to assess its performance.

4The quantity plotted corresponds to a total number of matrix elements equal to ∼ 1.5×N2
pix. Our algorithm

calculates the full N2
pix covariance matrix in order to make use of the LAPACK inversion routines (Anderson et al.,

1999), then compresses the inverted matrix to a 1-D array containing its upper triangle to reduce memory costs
while sampling.
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Figure 5.6: The memory needed to calculate the covariance matrix for patches of a given size at
HEALPix resolutions ranging from Nside = 8 (lightest-blue, lowest curve) to Nside = 2048 (highest,
darkest curve). The effects of pixel size are visible at small patch radii and low resolutions.

5.6.1 Processing maps

The candidate detection stage returns estimates for the size and position of features of interest

within a map, defining the set of patches to be considered in the evidence calculation. The

memory cost of computing each covariance matrix is derived from the number of unmasked pixels

within the patch: if this is greater than the memory available, the patch must be processed at

a degraded resolution.

In the HEALPix pixelization scheme, each step down in resolution reduces the pixel count,

npix, by a factor of four. As the covariance matrices are N2
pix in size, an estimate of the number

of steps down required is therefore given by

ndeg = ceiling

(
log (mest/mmax)

log 16

)
, (5.29)

where mest and mmax are the estimate of the memory required and the memory available. The

corresponding estimate of the finest resolution at which the patch can be processed is then

Nside,deg =
Nside,full

2ndeg
. (5.30)
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This estimate is tested by re-counting the number of unmasked pixels in the patch at the

new resolution. An Nside,deg mask is created by averaging within degraded-resolution pixels:

any Nside,deg pixel which is more than half masked at the input resolution is considered to be

masked. A precise calculation of the memory cost of the degraded covariance matrix is then

made: if this is below the memory threshold, as expected, the degraded resolution is accepted

and the algorithm proceeds; if not, the resolution is decreased once more.

Once the required resolution has been determined, the input CMB temperature map can be

degraded. As the CMB is a smooth field, it is not sufficient to simply average within Nside,deg

pixels: doing so will introduce large pixelization effects, which will act as an extra noise term

unaccounted for in the pixel-pixel covariance matrix. This can be avoided by smoothing such

that the input map is smooth on the degraded-pixel scale prior to reducing the resolution. This

is equivalent to introducing a band-limit, `max, in harmonic space. Choosing the band-limit is

a balance. If the smoothing scale is set too large (i.e., `max is too low), too much information

will be discarded with each degrade and performance will suffer. If the smoothing scale is set

too small (i.e., smaller than an Nside,deg pixel), the smoothed maps will contain pixelization

artefacts.

The choice of `max is somewhat arbitrary, but experimentation shows that the degradation

is stable if the harmonic-space Gaussian smoothing kernel is 1% of its maximum at `max =

2Nside,deg. This defines a smoothing scale at each resolution: the FWHM, fdeg, of the pixel-

space kernel is given by

fdeg =

√
8 log 2 log 100

`max(`max + 1)
. (5.31)

Assuming the 12N2
side pixels in a HEALPix map of given resolution are flat and square (a safe

assumption at high-resolution), the smoothing scale is approximately 2.5 times the size of a

pixel, and the maps are clearly smooth on the pixel-scale. The smoothing kernel sizes used for

the three degraded resolutions considered in this work are listed in Table 5.2. Note that for

speed and simplicity the smoothing is carried out on the full-sky, rather than within a patch:

the time taken to smooth in pixel-space scales poorly with patch size.

5.6.2 Calculating the degraded evidence

Care must be taken when calculating the covariance matrix for use in the likelihood: the covari-

ance matrix must include as faithful as possible a representation of the components of the data.

We must therefore capture every important feature of both the CMB “signal” (the CMB is, in

fact, the dominant noise in the analysis) and instrumental noise measured in the input map, as

well as the effects of the degradation process. It is helpful to break up the full covariance matrix,
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Nside,deg npix Pixel Scale (arcmin) Smoothing FWHM
256 786432 13.7 33.9
128 196608 27.5 67.7
64 49152 55.0 135.2

Table 5.2: The full-widths at half-maximum of the Gaussian kernels used to smooth input maps
prior to degradation. Also tabulated are the pixel count at each resolution, and an approximate
pixel scale, derived assuming each pixel is square.

C, into its CMB, S, and noise, N, constituents, as they are morphologically different.

CMB covariance

The CMB, as a correlated random field on the sphere, is most simply defined in harmonic space

by its power spectrum, C`. At full resolution, the CMB power is smoothed by the instrumental

beam, which we approximate in this analysis with a Gaussian of FWHM fWMAP. In patches that

are processed at reduced resolution, the CMB signal is also smoothed by the anti-aliasing beam

(another Gaussian, of FWHM fdeg) and further by the pixel window function of the degraded

resolution map. This final effect, shown for the relevant beams in Fig. 5.7, is small but non-

negligible. Ignoring the degraded pixel window function means that the covariance contains

an overestimate of the CMB power – in our analysis, a noise term – and log-evidences can be

underestimated by as much as 1 when degrading to Nside,deg = 64.

Taking all of these effects into account, the CMB covariance between two pixels i and j is

Sij =
∑

`

2`+ 1

4π
C`P`(cos θij)B

2
`,WMAP (5.32)

if the patch is processed at full resolution, and

Sij =
∑

`

2`+ 1

4π
C`P`(cos θij)B

2
`,WMAPB

2
`,degW

2
`,deg (5.33)

if the patch must be processed at degraded resolution. Here, P`(x) are the Legendre polynomials,

W`,deg is the Nside,deg pixel window function, and the B` are the WMAP and anti-aliasing

Gaussian beams, represented in harmonic space as

B` = exp

(−`(`+ 1)f2

16 log 2

)
, (5.34)

where f is the relevant FWHM.
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Figure 5.7: Window functions of the various smoothing kernels appearing in the adaptive-
resolution analysis. Shown are the WMAP7 W-band beam (approximated as a Gaussian, solid
line), the Gaussian smoothing applied before degradation to Nside,deg = 128 (dashed), and the
pixel window function at this resolution (dotted). Note that the pixel window function is only
defined up to ` = 4Nside,deg, the maximum multipole allowed by the HEALPix software.
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Instrumental noise covariance

At full resolution, the WMAP noise is uncorrelated in pixel space (see, e.g., Hinshaw et al.

(2003)). The noise covariance matrix is therefore diagonal, and can be written as

Nij =
σ2

WMAP

Nobs,i
δij , (5.35)

where σWMAP = 6.549 mK is the RMS noise of the W-band detectors, Nobs,i is the number of

times pixel i has been observed, and δij is the Kronecker delta.

The anti-aliasing smoothing applied as part of the degradation process induces correlations

between the noise measured in each pixel. Coupled with the variations in sky coverage repre-

sented by the Nobs values, this makes the exact pixel-space covariance more difficult to write

down. Progress can be made by separating the full-resolution noise model into isotropic white

noise, calculated from the power spectrum in harmonic space, which is modulated by a map

encoding the variations in sky coverage, which belongs entirely in pixel space. The effects of the

smoothing and degradation can then be applied individually to each component, and recombined

in the covariance matrix.

Uncorrelated pixel noise is identical to the noise generated by white (i.e., flat) noise in

harmonic space. To produce the correct RMS noise, the amplitude of the white noise power

spectrum, N`, should be set such that

N` =
σ2

WMAPΩpix

N̄obs
, (5.36)

where Ωpix is the pixel area, and we have incorporated the mean number of observations per

pixel, N̄obs, into the definition. After smoothing and degradation, the noise power spectrum is

no longer flat, having been multiplied by both the anti-aliasing beam and the degraded pixel

window function (both squared).

Having absorbed the mean number of pixel observations into the isotropic noise, to include

the effects of varying sky coverage we need only consider relative changes in the number of

observations in each pixel. These are captured by generating a map of
√
N̄obs/Nobs,i. After

degradation, this map will have been smoothed and degraded exactly as the input temperature

map; its mean at any resolution is one. The noise covariance matrix at degraded resolution is

then

Nij =
N̄obs√

Nobs,iNobs,j

∑

`

2`+ 1

4π
N`P`(cos θij)B

2
`,degW

2
`,deg, (5.37)

where the separation into components residing in pixel and harmonic space is clear. Note that
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Figure 5.8: Power spectra of the WMAP7 best-fit CMB signal (solid lines), WMAP7 noise
(dotted) and a single simulated bubble collision (dashed) with amplitude z0 = 5 × 10−5 and
angular radius θcrit = 7◦. The power spectra are plotted at full WMAP resolution, Nside = 512
(left), and after smoothing and degradation to Nside,deg = 128 (right).

this expression does not include the instrumental beam, as this is detector noise.

Full covariance

The sum over ` in the covariance matrix calculations is strictly a sum to infinity, but is approxi-

mated with a sum from 0 ≤ ` ≤ `max,cov, truncated at a point where all significant contributions

have been included. At full resolution, the data are noise-dominated at high-` (see Fig. 5.8), so

the covariance is not particularly sensitive to the precise value of `max,cov, provided it is larger

than ∼ 1000. We use `max,cov = 1024.5 After degradation, the CMB and noise power spectra

have been additionally damped by the extra smoothing and pixel window function. These ef-

fects combine to reduce the map power to ∼ 0.7% of its maximum at `max = 2Nside,deg, but the

kernel’s long tail means that there is still information at higher-`. If this is ignored, the maps

contain more information than is accounted for in the covariance matrix. The signal-to-noise

ratio of any relic present is therefore artificially boosted, and the evidence is over-estimated:

truncating at 2Nside,deg yields over-estimates of ∼ 5 in the log-evidence at Nside,deg = 64. Tests

reveal that evidence ratios are stable provided multipoles ` & 3Nside,deg are included in the

covariance matrix. We choose to be conservative and push this to `max,cov = 4Nside,deg.

The two components of the covariance are added to form the full covariance matrix.

C = S + N. (5.38)

This matrix must be inverted for use in the likelihood function; the inversion is carried out using

the Cholesky decomposition implemented in the LAPACK software package. The full-resolution

5The WMAP7 observations (Larson et al., 2011) extend the power spectrum measurements to ` = 1200, but
the CMB signal-to-noise ratio for the W-band is below one for ` & 600. Setting `max,cov = 1024 ensures the
CMB contribution is characterized well into the noise-dominated regime.
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covariance matrix has a prominent diagonal due to the uncorrelated pixel noise, and hence

is readily invertable. However, at lower resolutions the additional smoothing can make the

covariance matrix nearly singular. Diagonal regularizing noise is therefore added at the level of

2µK2 to all degraded-resolution covariance matrices to aid inversion: we have checked that this

does not affect the results of the likelihood calculation.

5.6.3 Calculation of patch-based evidence ratios with MultiNest

To form the full posterior (Eq. 5.24), we must calculate the patch-based evidence ratios (Eq. 5.16)

for each blob. Our pipeline uses the MultiNest sampler (Feroz and Hobson, 2008; Feroz et al.,

2009), which outputs the normalized posterior and the evidence for the data in each patch under

a specific model. This is not precisely the information required in Eq. 5.16, which integrates

the product of the likelihood and the full-sky prior. However, we can use Bayes’ theorem in the

patch to convert the output posterior into a likelihood according to

Prb(m0,m1|d) =
Pr(m0)Prb(m1)Prb(d|m0,m1)

Prb(d)
. (5.39)

Here, the subscript b indicates that the probabilities are formed using only the data for a single

blob. In particular, we identify

Prb(d|m0,m1) ∝ e−(d−t)C(bb)−1
(d−t)T/2 (5.40)

as the quantity necessary for the patch-based evidence ratio. The normalization assumed in

Eq. 5.39 is ∫

b

dm0dm1Pr(m0)Prb(m1) = 1, (5.41)

which implies that Prb(m1) is related to the prior Pr(m1) in Eq. 5.16 by an overall normalization:

Fb =
Pr(m1)

Prb(m1)
= 1−

∫

b̄

dm0dm1Pr(m0)Pr(m1). (5.42)

We also have

Prb(d) =

∫

b

dm0dm1Pr(m0)Prb(m1)Prb(d|m0,m1). (5.43)

Using these expressions, we can solve for the patch-based evidence in terms of known quantities:

ρb(m0) = Fb ×
Prb(d)

Prb(d|0, 0)
× 1

Pr(m0)

∫

b

dm1Prb(m0,m1|d), (5.44)
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where Prb(d|0, 0) is the likelihood in the patch with no sources.

All steps of the algorithm are parallelised wherever possible using OpenMP and MPI to take

advantage of both shared- and distributed-memory clusters.

5.7 Adaptive-resolution tests

5.7.1 Stability of degraded evidence values

The adaptive-resolution analysis pipeline was tested thoroughly to estimate the effect the de-

grading has on the calculated evidence values. Näıvely, we would expect the evidence not to

change (on average) for resolutions at which the feature is well-sampled, i.e., for which the pixel

scale is much smaller than the feature itself. Once the resolution has decreased enough for the

feature – and hence the template used to fit it – to appear pixelated, the evidence should begin

to drop off sharply. In harmonic space this is equivalent to requiring that enough modes are left

intact by the pre-degradation smoothing that the template power spectrum can be discerned.

The ideal test in this situation is to create a simulation containing a sufficiently large template

to be un-pixelated at the lowest resolution at which a feature can be processed: in this case,

Nside = 64. This feature should then be processed at all resolutions considered, from the highest

(WMAP-resolution) to the lowest, to determine how the evidence behaves. Unfortunately, the

very nature of the problem makes this is impossible: such templates would require enormous

covariance matrices at full resolution.

Progress can be made by breaking the test into parts. Simulations containing templates –

strong bubble collision signatures, in this case – are generated on a range of angular scales.

Each simulation is processed twice: first at the highest resolution possible, then again at one

resolution lower. This indicates how the evidence changes when a patch is not processed at its

“ideal” resolution, which could occur if the maximum angular size, θcrit, is overestimated. The

lower-resolution evidence values are calculated with four times fewer pixels: if the evidences

returned by the two runs do not differ greatly, we can be confident that small reductions in

resolution do not affect the evidence values returned.

Three maps are generated containing single bubble collision signatures of angular scale θcrit

equal to 7◦, 15◦ and 30◦, each of which contains approximately the same number of pixels at

Nside = 512, 256 and 128, respectively. In each case the signatures have the same amplitude,

z0 = 8 × 10−5, and position, (θ0, φ0) = (45◦, 45◦); the maps also contain the same CMB and

noise realizations, and are plotted in Fig. 5.9. The evidence is calculated once at the highest

resolution possible – Nside of 512, 256 and 128 for the 7◦, 15◦ and 30◦ collisions, respectively
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Figure 5.9: The maps used to test the adaptive-resolution analysis. Three maps are generated,
each containing a single bubble collision of radius θcrit = 7◦, 15◦ or 30◦. The maps contain
identical CMB and noise realizations, and in each case the bubble collision is placed at located
at (θ0, φ0) = (45◦, 45◦) with amplitude z0 = 8.0× 10−5. The 7◦ and 30◦ collision maps are also
used to test the effects of neglecting correlations with data outside the patch and the restriction
of template locations to the regions highlighted by the candidate detection stage. All plots are
shown at the same scale, and are 67◦ on a side.

– and once again after degrading one step in resolution – i.e., for Nside of 256, 128 and 64. In

each pair of tests the same ranges in size and position are sampled, and no mask is used. The

only small difference comes in the pixels included in the patch, as the lower-resolution patches

sample a slightly larger region than the high-resolution patches.6

The results of the tests are shown in Table 5.3. In each case, the evidence calculated at

high resolution matches the evidence at low resolution to within MultiNest precision. We

conclude that the adaptive-resolution analysis produces stable evidence ratios for the resolutions

considered in this work. Note that the evidence does not always decrease: in fact it can increase.

This is because the realization noise (i.e., the combined CMB and noise signal) is different after

degradation: the bubble collision signature is compared to larger-scale modes at lower Nside,deg.

Further, note that the log-evidence errors tabulated are the typical random variations due to

sampling, estimated by repeatedly testing an individual patch with initial conditions set from

different random seeds. MultiNest also provides a statistical estimate of the error in an evidence

calculation, derived from the relative entropy of the samples (see Skilling (2004) and Feroz and

Hobson (2008)). We find these estimates (typically ∼ 0.1 in log-evidence) to be subdominant to

the variations due to sampling.

5.7.2 Robustness to smoothing-induced contamination

The simulations used to test the adaptive-resolution pipeline contain only a CMB realization, a

noise realization and a bubble collision template; no mask was used. Real CMB datasets also

6When defining the patches using the HEALPix query disc subroutine, the “inclusive” option is set to include
all pixels which fall even partly within the radius we sample.
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Bubble θcrit (◦) Nside,deg npix log ρ
7 512 41618 12.6± 0.3
7 256 10544 12.8± 0.3
15 256 40715 14.2± 0.3
15 128 10314 14.0± 0.3
30 128 49894 13.2± 0.3
30 64 12619 13.1± 0.3

Table 5.3: Tests of the stability of the degraded evidence values. Three maps, each containing a
small, medium or large simulated bubble collision, are used to examine how the evidence ratio
changes when a patch is degraded from Nside = 512 to 256, 256 to 128 and 128 to 64.

contain foregrounds (or foreground residuals after component separation), the worst of which are

masked. Due to the need to smooth prior to degradation, there is a potential for contaminants

to leak from behind the mask.7 While it is possible to mitigate this effect by extending the

mask (and potentially using a smoothing kernel that is localized in pixel space) (Feeney et al.,

2011c), it is highly undesirable to discard hard-won data. The likely scale and amplitude of

any smoothing-induced contamination is therefore investigated to determine whether the mask

should be extended.

The masks recommended by the WMAP team (Gold et al., 2011) comprise two components:

a Galactic cut (of varying conservatism) and a point-source mask. The point-source mask is

created from a range of external and internal catalogs (as listed in Bennett et al. (2003b)), and

is updated with each data release. The point-sources, which appear in the data as approximately

Gaussian peaks with the same FWHM (0.22◦) as the instrumental beam, are masked by excising

a region of radius ∼ 0.6◦ centered on each point-source. A small number of the strongest sources

are more aggressively masked, out to a ∼ 1.2◦ radius. The cut made to remove the extended

emission of the Milky Way is much larger, and forms an irregular band ∼ 20◦ − 40◦ in width

centered on the Galactic Plane. For clarity, the effects of the two components of the mask are

investigated individually.

We can estimate the effects of point-source smoothing using a very simple test. A W-band

point-source is simulated by placing a normalized 1µK delta-function at a position taken from

the WMAP point-source catalog (Gold et al., 2011), then convolving it with a Gaussian of 0.22◦

FWHM. Since smoothing is a linear process, this can then be scaled to investigate the effects

of sources of different amplitudes. This map is then smoothed and degraded to each scale used

in the analysis (i.e., Nside = {256, 128, 64}), and masked using the degraded point-source mask

at each resolution. The resulting maps, plotted in Fig. 5.10, can then be scaled to mimic a

7The smoothing procedure is fastest in harmonic space, where it is a multiplication rather than a convolution.
Inclusion of the mask in this procedure is complex, and it is simplest to perform the smoothing on full-sky data.
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source of a given temperature. The plots show that, at all resolutions considered, the maximum

contamination injected into a single pixel is a few thousandths of the point-source’s amplitude.

Assuming that such sources have amplitudes of 100−1000µK (Wright et al., 2009), these results

suggest that our degradation technique induces contaminants of at most 1−2µK into fewer than

10 pixels. This level is completely subdominant to the CMB signal, and so should not affect the

analysis. We therefore need not extend the point-source mask when smoothing and degrading.

An estimate of the contaminants leaked from the Galactic cut can be obtained in a similar

fashion. In place of the simulated point source, we must make an estimate of the Galactic

foreground residuals. Modeling this precisely is difficult, so, following Pontzen and Peiris (2010),

1% of the difference between the V-band signal and the WMAP7 Internal Linear Combination

(ILC) map (Gold et al., 2011) is used for illustrative purposes. This combination is indicative

of the morphology and amplitude of residuals within the ILC: there are contaminants of around

50 times the amplitude visible to the eye in the WMAP foreground-reduced maps. As with the

simulated point-source, we take this map, smooth and degrade it to Nside values of 256, 128

and 64, and then mask using only the Galactic portion of the 7-year KQ85 mask. The resultant

maps are plotted in Fig. 5.11, along with the input. The extra smoothing creates a strip, a few

pixels wide, of contamination around the Galactic mask, typically at a level of 0.3 − 0.4µK.

Scaling this up by a factor of 50 yields contaminants of ∼ 20µK. Although this is an order

of magnitude higher than that created by point-sources, it is extremely localized, and does not

mimic any of the target signals. We conclude that, as with the point-source mask, there is no

need to extend the Galactic cut when degrading. Our adaptive-resolution algorithm should be

robust to smoothing-induced contamination, a hypothesis that will be further tested at a later

point by processing a null simulation containing realistic foreground residuals.

5.8 Testing the formalism’s approximations

The formalism set out in Section 5.3 includes two main approximations: that the likelihood need

only be integrated over ranges of {θ0, φ0} (and, indeed, θcrit) corresponding to patches containing

candidate sources, and that correlations between data inside and outside these patches can be

neglected. The error made in each of these approximations will depend on the nature of the

source templates. In particular, the accuracy of the first approximation will depend on how well

the candidate regions cover the underlying sources, and how the likelihood falls off as a function

of the location and size of the feature. It is also important to note that the approximations will

most likely improve as a function of the signal-to-noise for the source: if the likelihood is not

peaked in any region of parameter space, we are not justified in choosing to integrate only over
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Figure 5.10: A typical WMAP W-band point-source contaminant (top-left, plotted using the
inverted point-source mask), and the effects of smoothing a unit-amplitude simulated point-
source and degrading to Nside,deg = 256, 128 and 64. All low-resolution plots are shown with a
degraded mask applied, which limits any residuals to O(µK). All plots are 12.5◦ on a side.
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Figure 5.11: One percent of the difference between the WMAP V-band and ILC maps provides
an estimate of the Galactic contamination present in WMAP data products. This map is plotted
here (top-left), alongside the residuals produced by smoothing and degrading it to Nside,deg =
256, 128 and 64. All low-resolution plots are shown with a degraded KQ85 Galaxy-only mask
applied.

particular regions.

To explore these issues, consider the single-source contribution to the posterior Eq. 5.10.

Neglecting correlations between regions inside and outside the patch (see Eq. 5.13) corresponds

to the assumption that

tC−1dT
b̄ � 1 , (5.45)

where the template has support in a blob b, and the data consist of pixels in region b̄ outside

the blob. In Fig. 5.12, we plot the inverse covariance between several positions and the rest of

the sky (e.g., a set of rows of the inverse covariance matrix) in ΛCDM using the best-fit WMAP

7-year cosmological parameters, keeping only the first 50 multipole moments. It can be seen

that the inverse covariance is only significant within a disk of radius ∼ 15◦ around each of the

template pixels. Therefore, we need not retain all of the pixels on the sky. In Fig. 5.13, we depict

the case where the likelihood is peaked for templates inside a region well-contained within the

blob (shaded disk). The inverse covariance will be significant within a disk (dashed circle) of

∼ 15◦ around each pixel where the template is non-zero (black dot). Our approximation neglects

correlations between the template and the pixels contained within the dashed circle, but outside

the blob (i.e., in region b̄). The exponential will clearly yield a decreasing correction to the

integral as the size of the blob is increased, becoming vanishingly small when the radius of the
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Figure 5.12: The inverse of the pixel-space ΛCDM correlation function between θ = 0 and all θ,
θ = 72◦ and all θ, and θ = 144◦ and all θ (left to right). It can be seen that C−1 is largest in
magnitude over a ∼ 30◦ window around the pixel being correlated.

blob is ∼ 15◦ larger than the size of templates near the maximum of the likelihood. For terms

of higher order in Ns, the correction is slightly more complicated, but for blobs separated by

a distance greater than 15◦, the argument is the same. Another assumption we have made is

encoded in Eq. 5.14: that the pixels in region b̄ do not contribute to the inverse of the covariance

inside region b. Further, if the actual source is well-contained within the blob, the likelihood will

presumably peak in a region well-contained within the blob (which is the assumption behind our

first approximation of integrating over region b alone).

The reasoning set out above provides qualitative support for the approximations that make

this analysis feasible. To determine quantitatively how good these approximations are, we have

performed three numerical tests. The first two tests are designed to determine whether correla-

tions with pixels outside the blobs can indeed be discounted; the third determines the effects of

restricting the position integral to within our candidate blobs.

5.8.1 Tests of neglected correlations

The ideal test of the effect of neglected correlations would be to perform evidence integrals for

simulated collisions of varying sizes using covariance matrices ranging from patch-sized to full-

sky. Unfortunately, memory restrictions mean we can only hold the full-sky covariance matrix

in memory for HEALPix resolutions smaller than Nside = 64. At this resolution each pixel is

∼ 1◦ across, so only large collisions are faithfully represented. As with the tests of the adaptive

resolution analysis, we therefore split the test up, performing two tests: one checking the effect

of neglected correlations on the largest scales, and the other at smaller scales.

The first test uses the map simulated for the largest-scale degradation tests, containing a

30◦ bubble collision template placed at (θ0, φ0) = (45.0◦, 45.0◦) with amplitude z0 = 8 × 10−5
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Figure 5.13: The case where the source is well-contained within the blob. There is a clearly
peaked likelihood for templates contained within the shaded disk. For the pixel denoted by the
black dot, the inverse covariance is significant only within the dashed circle. Our approximation
neglects correlations with pixels in the hatched region. This approximation is worst for pixels
on the edge of the template.

(as plotted in Fig. 5.9). The simulation is passed to the candidate detection stage, and the

patch corresponding to the bubble collision is singled out. The evidence ratio is then calculated

twice at Nside,deg = 64, first using the covariance matrix calculated for the patch, and second

using the covariance matrix calculated on the full-sky. For clarity, the test is carried out without

masking, and the integration limits on the template parameters are kept constant for both runs.

The difference between evidence ratios returned will indicate the scale of any error induced by

neglecting correlations at the largest scales.

The second test reuses the smallest map considered in the degradation tests (again, plotted

in Fig. 5.9), containing a 7◦ bubble collision template with the same amplitude and position as

in test one. As in the first test, the candidate detection algorithm is applied, and the feature

containing the template is extracted. The evidence is calculated first using the standard patch

size 15.4◦ in radius, then using progressively larger patches of sky until the patch is 30◦ in

radius. At this point, Fig. 5.12 implies that the covariance matrix contains all pixels significantly

correlated with those in the candidate collision region. The difference between evidence ratios

will therefore indicate the errors associated with neglecting correlations on smaller scales. As

with the first test, the integration limits used in each case are the same, as is the resolution

(Nside,deg = 256) at which the calculation is performed, and no mask is used.

The results of the two tests are presented in Tables 5.4 and 5.5. In each case, increasing
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θpatch(◦) npix log ρ
60.1 12619 13.1± 0.3
180.0 49149 13.3± 0.3

Table 5.4: The evidence ratios obtained when a patch covariance matrix is used versus the full-
sky covariance matrix. Note that the full-sky covariance matrix does not quite cover the entire
sky: three pixels are left out. This is a consequence of the patch-based nature of the algorithm,
and does not affect the conclusions.

θpatch(◦) npix log ρ
15.4 14670 13.0± 0.3
20.0 24167 13.1± 0.3
25.0 37388 13.2± 0.3
30.0 53338 13.0± 0.3

Table 5.5: The evidence ratios obtained when the size of the patch covariance matrix is incre-
mentally increased until all correlations are included.

the patch size does not change the evidence value obtained beyond MultiNest precision. This

supports that the assumption that correlations outside of the patch can be neglected, and indi-

cates that doing so does not add a significant source of systematic error, given the scale of the

variations induced by the nested sampler.

5.8.2 Test of localization of likelihood peaks

The third assumption test is designed to assess the claim that the likelihood is peaked in position

space, and that the evidence values obtained are unchanged when only the peaks are considered;

this amounts to changing the limits of integration in Eq. 5.16. This test uses the same 7◦-

bubble collision map as in the second test. This time, the patch radius is held constant at 30◦,

but the set of central positions sampled is incrementally increased until the template can be

centered anywhere within the entire patch. The nested sampler therefore has access to greater

portions of the collision environs – by the fourth run it can sample central positions placing the

templates entirely outside the simulated collision region – and can provide an estimate of how

much evidence is discarded by restricting the template position to lie within the blob.

The results of the test are reported in Table 5.6. The evidence ratio is stable, indicating that

sampling from a larger range of central positions does not affect the outcome. This implies that

the likelihood is indeed well-localized, supporting the assumption that the evidence integration

need only be carried out over a restricted range of positions. The likelihood is plotted as a

function of the two angular coordinates in Fig. 5.14, and indeed is very strongly peaked about
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Center Range / θpatch Center Range (◦) log ρ
10% 1.4 13.0± 0.3
25% 3.5 13.0± 0.3
50% 7.0 13.0± 0.3
75% 10.5 13.1± 0.3
100% 14.0 12.8± 0.3

Table 5.6: The evidence ratios obtained when the range of collision centers sampled is incremen-
tally increased until the collision can be placed anywhere within the patch.

Figure 5.14: The localization-test likelihood as a function of co-latitude θ0 (left) and longitude
φ0 (right), plotted on a logarithmic scale. Overplotted as dashed lines are the integration limits
used in each of the five runs testing how the evidence changes as the central positions are sampled
from larger regions. These limits correspond to sampling central positions from 10%, 25%, 50%,
75% and 100% of the patch by angular radius. The likelihood is very strongly peaked in both
angular coordinates.

the position highlighted by the candidate detection stage.

5.9 Null test: Analysis of WMAP end-to-end simulation

The WMAP data contain a number of components that cannot be included in the pixel-space

covariance matrix; in particular, the foregrounds are not known precisely, and so their subtraction

leaves behind unknown, highly anisotropic residuals. It is therefore important to apply the

Bayesian analysis pipeline on a null dataset containing estimated foreground residuals – and any

other potential systematic effects – to determine whether they generate false-positive results.

The full end-to-end simulation of the WMAP experiment used to set the optimal-filter detection

thresholds is perfectly suited to the task, as it is created from simulated time-ordered data,

including foreground contamination, and is processed by exactly the same pipeline as the WMAP

observations.

The raw optimal filter analysis of the WMAP 7-year W-band end-to-end simulation (with the

KQ85 mask applied) generates 19 bubble collision candidates and 10 texture candidates. Any
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candidates which are heavily masked are discarded, as are candidates whose estimated range

of sizes has no overlap with the relevant prior on θcrit. Finally, any candidates which clearly

correspond to a single feature are merged, leaving a set of 12 and 4 bubble collision and texture

candidates, respectively. The sizes and locations of these candidates as estimated by the optimal

filters are tabulated in Table 5.7.
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Figure 5.15: The posterior probabilities of the global parameters of the bubble collision (left)
and texture (right) models, given the end-to-end simulation of the WMAP 7-year W-band. The
posterior is plotted as a function of one parameter, N̄s, for bubble collisions, and two parameters,
N̄s and ε, for textures. The regions containing 68% and 95% of the posterior probability are
indicated by the dotted and dashed lines in the bubble collision plot, and as dark and light
regions in the texture plot. Both posteriors are strongly peaked at zero sources.

The patch evidence ratios obtained by applying the adaptive-resolution Bayesian evidence

calculation to these candidates are also presented in Table 5.7. As expected, no candidate

exhibits strong evidence in favor of either the bubble collision or texture model: the maximum

evidence ratios are e−5.4 and e−4.0, respectively. Merging these results produces the posteriors

on the global model parameters as plotted in Fig. 5.15. The posteriors for both models are

clearly peaked at N̄s = 0, confirming our prior knowledge that there are no bubble collisions

or textures in the end-to-end simulation of the WMAP W-band data. The null test therefore

indicates that we should not expect un-modeled foreground residuals and unknown systematics

to generate false positives in the WMAP data. Further, the maximum evidence ratios obtained

provide indicators of the level of response foregrounds and systematics can produce: any features

found in the data should exceed these values in order to be considered interesting.

5.10 Analysis of WMAP 7-Year data

Our analysis of the WMAP 7-year W-band foreground-reduced temperature map (with the KQ85

mask applied) produces a total of 32 bubble collision candidates and 33 texture candidates. The

candidates’ locations are visually inspected, and those which are mostly obscured by the mask

are discarded; candidates found to have no overlap with the relevant priors on θcrit are likewise

cut. Any candidates which are obviously coincident are merged at this point. The remaining

candidates are then required to also be significant in an optimal filter analysis of the WMAP 7-

year V-band foreground-reduced temperature map. This simple check requires that each feature

is interesting across a range of frequencies, indicating that it is not due to foregrounds. This
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final cut leaves a set of 11 and 12 bubble collision and texture candidates respectively. The

most probable sizes and locations of these candidates are tabulated in Table 5.8 and plotted in

Fig. 5.16.
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Applying the adaptive-resolution evidence calculation to the candidates produces the patch

evidence ratios also reported in Table 5.8. No single candidate is strong enough to claim a

detection on its own. However, as demonstrated in Feeney et al. (2011a) and Feeney et al. (2012),

it is possible for a number of weak candidates to favor the addition of relics to ΛCDM even if

their individual evidence ratios are less than one: only by combining the results obtained for all

candidates can the overall predictive power of the underlying model be revealed. The posteriors

on the global parameters of the bubble collision and texture models, derived by combining

the results from the candidates, are plotted in Fig. 5.17: both posteriors are peaked at zero

sources. The texture model’s dimensionless scale of symmetry breaking is constrained to be

2.6× 10−5 ≤ ε ≤ 1.0× 10−4 (at 95% confidence), which, as the prior is defined only within the

range 2.5×10−5 ≤ ε ≤ 1.0×10−4, indicates that the WMAP data do not provide any interesting

constraint on this parameter.

The WMAP 7-year data do not favor the addition of either bubble collisions or textures to

ΛCDM. As none of the candidates exhibits significant evidence for the addition of sources to

ΛCDM, we do not check the candidates for foreground residuals.

5.11 Discussion

In Feeney et al. (2011a,b) and Feeney et al. (2012), searches for bubble collisions and textures

using earlier versions of the Bayesian source detection pipeline were published. Each previous

analysis shares a number of candidate features in common with the current analysis, allowing

consistency checks to be carried out between versions of the pipeline. Comparing results between

versions is non-trivial, and must take into account each change made to the algorithm. In

particular:

1. The prior on the bubble collision size has changed from uniform in the range 2-11.25◦

to being proportional to sin θcrit in the range 2 − 90◦. Ceteris paribus, this will reduce

evidence ratios previously reported for bubble collision candidates, particularly those at

small scales.

2. The bubble collision template previously allowed for a discontinuity at the template bound-

ary with amplitude zcrit. This parameter is now set to zero due to updated theoretical

results (Gobbetti and Kleban, 2012; Kleban et al., 2011), and the bubble collision model

considered in this analysis is consequently nested within the model considered previously.

The effects of removing the edge can be determined exactly using the Savage-Dickey Den-

sity Ratio (Dickey, 1971): the change in evidence will be the ratio of the posterior and
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Figure 5.16: Top: the estimated sizes and amplitudes of the bubble collision (left) and texture
(right) candidates located in the WMAP 7-year data by the optimal filters. Bottom: the patches
of WMAP 7-year data passed to the Bayesian evidence calculation for each of these candidates.
The bubble collision plot shows all of the data involved in the evidence calculation for each
candidate; for clarity, the texture plot only shows the core region of each patch. Note that
the plots of the optimal filter candidates (top) contain only the estimated contributions due to
additional sources, and the temperature ranges therefore differ from the plots of the WMAP
data (bottom).

Figure 5.17: The posterior probabilities of the global parameters of the bubble collision (left)
and texture (right) models, given the WMAP 7-year data. The posterior is plotted as a function
of one parameter, N̄s, for bubble collisions, and two parameters, N̄s and ε, for textures. The
most probable regions containing 68% and 95% of the posterior probability are indicated by the
dotted and dashed lines in the bubble collision plot, and as dark and light regions in the texture
plot. Both posteriors are strongly peaked at N̄s = 0.
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prior probabilities of the edge amplitude, evaluated at zcrit = 0 using the results of the

previous analysis, i.e.,

∆ log ρ = log
Pr(zcrit|d, old)

Pr(zcrit, old)

∣∣∣∣
zcrit=0

.

As there was little evidence to support the edge parameter in the earlier analysis, the ratio

of posterior to prior at zcrit = 0 is typically ∼ 10, and the new evidence ratios are boosted

accordingly.

3. The new analysis replaces the WMAP 7-year KQ75 mask used in all prior analyses with

the KQ85 mask, revealing ∼ 8% more of the sky. The change in the fraction of the sky

available to the algorithm increases the prior volume on observable source positions by

∼ 8% as well, and the log evidence ratios hence decrease by a similar amount.

4. The candidate detection method has changed from needlets to optimal filters, and the

ranges of size and position deemed significant therefore also change. The integration limits

for the patch evidences can differ by small amounts if the new ranges either reveal or

truncate regions of non-zero likelihood.

In addition, since the first bubble collision analysis we have used an increased number of

MultiNest live points and tighter tolerance and efficiency settings. The current settings were

chosen to ensure accurate calculation of the evidence; however, tests show that there is no

significant difference in our results due to the new settings.

Table 5.9 shows the expected and observed changes in evidence ratio obtained for the four best

bubble collision and texture candidates processed in the previous analyses. In the majority of

cases the differences between the observed and expected changes in evidence ratios are consistent

to MultiNest precision, but there are two bubble collision cases where the new results show a

significant difference.

The first case is the Cold Spot, candidate 3. The memory restrictions of the previous analy-

sis (Feeney et al., 2011a,b) required that the θcrit range sampled be truncated (compare Tables

VII in Feeney et al. (2011a) and 5.8 in the current analysis). The new adaptive-resolution al-

gorithm allows the full range of θcrit estimated by the candidate detection stage to be sampled,

revealing an additional peak in the posterior and boosting the evidence accordingly. The second

case is candidate 4. The patches of data used to calculate the evidence for this candidate contain

a ∼ 4◦ × 3◦ region masked by the KQ75 mask but not by the KQ85 mask. The improvement

in evidence ratio most likely derives from uncovering these extra pixels, which produce an extra

hot contribution to an already hot feature.

177



source new ID old ID expected ∆ log ρ observed ∆ log ρ
bubble 3 2 −2.1 −1.2
bubble 4 3 −4.1 −3.1
bubble 1 7 −4.0 −3.4
bubble 2 10 −3.8 −4.0
texture 2 6 −0.1 −0.5
texture 3 8 −0.1 −0.4
texture 8 9 −0.1 −0.2
texture 5 10 −0.1 −0.2

Table 5.9: The expected and observed differences in evidence ratio found for the four best
bubble collision and texture candidates between the previous incarnation of the pipeline and the
present analysis. Included in the expected change are the new form of the θcrit prior for the
bubble collisions, the removal of the edge from the bubble collision template, and the change in
the mask. Note that the evidence ratios and IDs of the texture candidates were not previously
published.

The only differences between the current texture analysis and that of Feeney et al. (2012)

are the candidate detection algorithm and the mask employed. The candidates that contributed

most significantly to the posterior in the previous analysis are all still detected by the optimal

filters, and the changes in evidence observed are consistent within MultiNest precision, given

the new mask and small differences in integration limits from changing the candidate detection

stage. Indeed, the posteriors produced by the two analyses (Fig. 2 of Feeney et al. (2012) and

the right-hand plot of Fig. 5.17) are almost indistinguishable by eye.

5.12 Conclusions

We have presented a hierarchical Bayesian algorithm for the detection of spatially-localized

sources in high-resolution CMB datasets. The algorithm uses the posterior over the global

parameters describing the population of sources to determine whether their presence is warranted

by the data and prior theoretical knowledge. To cope with the volume of data available, a

conservative approximation to the posterior is calculated by selecting the most likely candidate

sources using optimal filters and assuming that the remaining data do not contribute to the

likelihood. Candidates are processed at the highest data resolution possible, given their size

and the computing power available. The effects of the approximations and adaptive-resolution

analysis have been quantified using a suite of tests, and are found to be comparable to the typical

variance in sampling from the un-approximated posterior.

As a demonstration, the pipeline has been applied to search for evidence of bubble collisions

and cosmic textures in the WMAP 7-year data. This work removes the size restriction imposed

by memory constraints on the previous bubble collision analysis (Feeney et al., 2011a,b), as
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well as optimising the candidate detection stages of previous bubble collision and texture anal-

yses (Feeney et al., 2011a,b; Feeney et al., 2012). The WMAP data do not favor the addition

of either bubble collisions or cosmic textures to the ΛCDM model: even though such sources

provide higher-likelihood fits, they are not sufficiently predictive to overcome the extra model

complexity. In the context of these models our results also place limits on the average numbers

of bubble collisions and textures per CMB sky, which are constrained to be fewer than 4.0 and

5.2 at 95% confidence, respectively. The WMAP data do not place any significant constraint on

the dimensionless scale of symmetry breaking for textures, ε.

The Planck satellite (Tauber et al., 2010) will soon release temperature data with a factor

of 2-3 improvement in resolution and ∼ 10 in pixel noise over WMAP. Further, it will extract

essentially all of the information from the temperature power spectrum, providing a near-ideal

characterization of the dominant source of noise in the analysis. These facts strongly motivate

performing the texture and bubble collision analyses on the Planck data when they become

available. In addition, high-quality CMB polarization data are being gathered by experiments

such as Planck, ACTPol (Niemack et al., 2010), SPTPol (McMahon et al., 2009) and Spider (Crill

et al., 2008). Textures do not induce a polarization signal (Vielva et al., 2011), but bubble

collisions are expected to create characteristic imprints (Czech et al., 2010), complementary to

those in the temperature data. Extension of the hierarchical Bayesian analysis pipeline to process

polarization data, either in isolation or by cross-correlating with temperature maps, therefore

represents a promising avenue for future tests of these models. Further, such an upgraded pipeline

could be readily applied to other localized signatures in the CMB, such as the Sunyaev-Zel’dovich

effect produced by clusters of galaxies.
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Appendix A

Appendix to Chapter 3

A.1 Statistical formalism

A.1.1 Posterior

In this appendix, we discuss how Bayesian parameter estimation and model selection for theories

which predict localized sources can be approximated by a patch-wise analysis. Consider astro-

nomical observations covering solid angle Ωobs = 4πfsky that are of sufficient depth/resolution to

identify sources with a particular range of properties (which can then be deemed “detectable”).

Given a theory that predicts an expectation value of N̄s sources over the whole sky, we want

to know both: what constraints the available data place on N̄s; and whether the data favour a

model which predicts one value of N̄s over another. all the relevant information is encoded in

the posterior distribution Pr(N̄s|d, fsky), where d are the pixelized flux or temperature measure-

ments (and, optionally, any statistics derived from them). Bayes’ theorem allows the posterior

to be written as

Pr(N̄s|d, fsky) =
Pr(N̄s) Pr(d|N̄s, fsky)

Pr(d|fsky)
, (A.1)

where Pr(N̄s) is the prior distribution on N̄s, Pr(d|N̄s, fsky) is the likelihood of getting the

observed data given the area of observation and the expected number of sources, and Pr(d|fsky)

ensures that the posterior is normalized over N̄s. Constraints on N̄s can be drawn directly from

this normalized posterior; the relative probability of models predicting different values of N̄s can

be found by picking out the posterior at two values of N̄s:

Pr(N̄s,1|d, fsky)

Pr(N̄s,2|d, fsky)
=

Pr(N̄s,1)Pr(d|N̄s,1, fsky)

Pr(N̄s,2)Pr(d|N̄s,2, fsky)
. (A.2)

In the absence of a prescriptive theory, it is useful to emphasize the role of the data, which
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can be done by adopting a flat prior on N̄s; further assuming that the data will give an upper

limit on N̄s, it is possible to adopt an improper uniform prior Pr(N̄s) = Θ(N̄s) without any

high-N̄s cut-off. The resultant posterior has the form

Pr(N̄s|d, fsky) ∝ Θ(N̄s) Pr(d|N̄s, fsky), (A.3)

up to a normalization constant that depends on the data and fsky but not on N̄s.

In general N̄s is not directly measurable, even for perfect data, because the number of sources

present in the observable sky, Ns, is the realization of a Poisson-like process (of mean fskyN̄s).

The possibility that Ns is itself subject to some uncertainty (e.g., due to noisy data or confusion

problems) can be incorporated by marginalizing over Ns to give

Pr(d|N̄s, fsky) =

∞∑

Ns=0

Pr(Ns|N̄s, fsky) Pr(d|Ns, fsky)

=

∞∑

Ns=0

(fskyN̄s)
Nse−fskyN̄s

Ns!
Pr(d|Ns, fsky), (A.4)

where the second formula explicitly assumes that the number of observable sources is drawn

from a Poisson process. Inserting this second expression into Eq. A.3 then gives

Pr(N̄s|d, fsky) ∝ Θ(N̄s) e
−fskyN̄s

∞∑

Ns=0

(fskyN̄s)
Ns

Ns!
Pr(d|Ns, fsky). (A.5)

The form of the likelihood Pr(d|Ns, fsky) is treated largely in abstract here, with the specific

details of the likelihood calculation for the bubble collision hypothesis given WMAP 7-year data

described in Sec. 3.6.3. Assuming the measurements take the form of flux/counts at different

positions on the sky (as for a CMB experiment) and that they are subject to (possibly correlated)

Gaussian noise, the likelihood would have the form

Pr(d|Ns, fsky) =

∫
dm1 . . . dmNs

Ns∏

s=1

Pr(ms)
e−[d−t(m1)...−t(mNs )]C−1

[d−t(m1)...−t(mNs )]T/2

(2π)npix/2|C| ,

(A.6)

where t(m) is the data template that would result from a source whose position and profile/scale

are defined by the model parameters m, Pr(ms) is the prior distribution of source parameters for

“detectable” sources, and C is the pixel-pixel covariance matrix of the non-source noise (which

could include contributions that are considered signal in other contexts, such as the CMB).

Evaluating the full sum in Eq. A.5 is not always practical or even possible. In addition,

the evaluation of individual terms in this sum will be computationally limited by the size of
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the covariance matrix C and the cost of performing the integral over model parameters for

each template. However, it is possible to circumvent these problems, and estimate the posterior

Eq. A.5 if one knows in advance some of the properties of the integrand in Eq. A.6.

To see how this works, assume that one has located a set of Nb “blobs” on the sky that are

candidate sources. Segment the sky into Nr = Nb + 1 regions consisting of those containing

blobs, and the rest of the sky. Given Nb, we can now evaluate Eq. A.5 term-by-term. The

likelihood in the first term, for Ns = 0, is simply given by:

Pr(d|0, fsky) =
1

(2π)npix/2|C|e
−dC−1

dT/2, (A.7)

which is the likelihood for the null-hypothesis with no sources. Moving on to the Ns = 1 term,

we first expand the integral over source positions to cover each of the Nr regions:

Pr(d|1, fsky) =

Nr∑

r=1

∫

region r

dm Pr(m)
1

(2π)npix/2|C|e
−[d−t(m)]C−1

[d−t(m)]T/2, (A.8)

We now assume that the blobs containing candidate sources include all of the significant con-

tributions to the integral, and replace Nr in the sum by Nb. This will give us a lower bound on

the likelihood, even if a number of actual sources are not contained within the blobs defined by

the candidate sources. We further assume that sources do not overlap. If the covariance matrix

is small enough to invert, we could stop here. However, in cases where the covariance matrix is

too large to feasibly invert (as is the case for the WMAP 7 year data), we can make one further

approximation:

∫

region b

dm Pr(m)
1

(2π)npix/2|C|e
−[d−t(m)]C−1

[d−t(m)]T/2 '
∫

region b

dm Pr(m)

Nr∏

r=1

Lr(m),

(A.9)

where the product is over Nr disjoint regions on the sky and

Lr(m) =
1

(2π)npix/2|Cr|
e−[dr−tr(m)]C−1

r [dr−tr(m)]T/2. (A.10)

is the contribution to the likelihood of data in region r, defined in terms of the covariance of

the pixels in this region, Cr, the data in this region, dr, and the source template in this region,

tr(m). This is exact for a diagonal covariance, but is only approximate in the case where there

are off-diagonal elements. Using the assumption that the integral has a significant contribution

only inside the blobs, in the rest of the sky we can replace t = 0. The one-source model likelihood
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then becomes

Pr(d|1, fsky) '
Nb∑

b=1

Nr∏

r=1

Lr(0)ρb, (A.11)

where

ρb =

∫
region b

dm Pr(m)Lb(m)

Lb(0)
. (A.12)

This is the evidence ratio for a single source template centered in region b.

For a general number of blobs and sources, the model likelihood is

Pr(d|Ns, fsky) =





0, if Ns > Nb,

∑Nb

b1,b2,...,bNs=1

[∏Ns

s=1 ρbs
∏Ns

i,j=1(1− δsi,sj )
∏Nr

r=1 Lr(0)
]
, if Ns ≤ Nb,

(A.13)

where the combinatorics require some explanation. If there are fewer blobs on the sky than

proposed sources then the likelihood is very small: by assumption, the likelihood evaluated

outside of a blob is small. If there are at least as many blobs as proposed sources, then the

likelihood takes the form of a sum that includes every possible association of the Ns sources

with the Nb blobs, provided that no two sources are matched to the same blob. Hence the

multiple sum generates all possible combinations of source-blob associations and the product

over evidence ratios gives the relevant weightings; the product over delta functions removes the

terms in which any two sources are attached to the same blob.

Inserting the likelihood given in Eq. A.13 into Eq. A.5 yields the unnormalized posterior on

N̄s:

Pr(N̄s|d, fsky) ∝ Θ(N̄s) e
−fskyN̄s

Nb∑

Ns=0

(fskyN̄s)
Ns

Ns!

Nb∑

b1,b2,...,bNs=1



Ns∏

s=1

ρbs

Ns∏

i,j=1

(1− δsi,sj )


 ,

(A.14)

under the assumption that

Pr(d|0, fsky) =

Nr∏

r=1

Lr(0), (A.15)

in which case regions that do not contain a blob are irrelevant for determining the posterior.

Eq. A.14 is the main result of this calculation, from which all following results can be derived.

In the limit of a single isolated observation Eq. A.14 reproduces the Bayesian source detection

formalism developed in Hobson and McLachlan (2003) and Hobson et al. (2010).
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A.1.2 Special cases

Perfect data

With infinite, perfect data the number of sources on the sky would be directly determined by

counting the Nb “blobs” in the data and so Pr(d|Ns, fsky) = δNs,Nb
. The posterior in Eq. A.14

would become

Pr(N̄s|Nb, fsky) ∝ Θ(N̄s)N̄
Nb
s e−fskyN̄s , (A.16)

the standard result for constraining a rate variable from a single measurement, modified slightly

to account for the fact that the constraint on N̄s is weakened if fsky � 1. In the even more

particular case that no blobs were detected in perfect data, the posterior would be

Pr(N̄s|0, fsky) = Θ(N̄s) fskye
−fskyN̄s . (A.17)

If a single blob was detected unequivocally then the posterior would be

Pr(N̄s|1, fsky) = Θ(N̄s) fsky(fskyN̄s)e
−fskyN̄s . (A.18)

If two blobs were detected unequivocally then the posterior would be

Pr(N̄s|2, fsky) = Θ(N̄s)
fsky

2
(fskyN̄s)

2e−fskyN̄s . (A.19)

No blobs

If there are no identified blobs then Nb = 0 and there is no evidence for any sources at all.

This is really a weaker constraint than the above situation if the data are perfect, but in the

approximation used here the final result is the same. In Eq. A.14 the first sum is truncated at

the first term and so

Pr(N̄s|0,d, fsky) = Θ(N̄s) fskye
−fskyN̄s , (A.20)

matching Eq. A.17.

Adopting a flat prior on N̄s, the posterior probability ratio for a model predicting a generic

N̄s > 0 versus one predicting no collisions in this case is given by

Pr(N̄s | 0,d, fsky)

Pr(0 | 0,d, fsky)
= e−fskyN̄s . (A.21)

This is always less than one, and so as expected, a theory which predicts N̄s sources on the sky

is always disfavoured when compared to a theory that predicts no sources on the sky.
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One blob

Probably the most important simple case is where there is a single identified blob, which might

represent a first detection of this class of source. Inserting Nb = 1 into Eq. A.14, the sum

includes the possibilities of either one source on the (observed) sky or no sources; the posterior

evaluates to

Pr(N̄s|1,d, fsky) = Θ(N̄s) fskye
−fskyN̄s

1 + fskyN̄sρb
1 + ρb

, (A.22)

In the limit that the data in this region are much better fit by a source then ρb � 1, and the

posterior becomes

Pr(N̄s|1,d, fsky) = Θ(N̄s) fsky(fskyN̄s)e
−fskyN̄s , (A.23)

which matches A.18 above. Conversely, in the limit that the source is a worse fit to the data

(possible given that the source has been forced to be detectable), then ρb � 1 and

Pr(N̄s|1,d, fsky) = Θ(N̄s) fskye
−fskyN̄s , (A.24)

matching Eq. A.17 which was obtained under the assumption that there was no blob in the first

place.

Adopting again a flat prior on N̄s, the posterior probability ratio for a model predicting a

generic N̄s > 0 versus the no-bubble case is given by

Pr(N̄s| 1,d, fsky)

Pr(0|1,d, fsky)
= e−fskyN̄s

(
1 + fskyN̄sρb

)
. (A.25)

Here, it can be seen that two things are necessary to favour the theory with sources given one

detection: N̄s ∼ O(1) and ρb � 1.

Two blobs

If two blobs are identified then the sum in A.13 has three terms, for which the likelihoods are:

Pr(2,d|0, fsky) =

Nr∏

r=1

Lr(0), (A.26)

Pr(2,d|1, fsky) = [ρb1 + ρb2 ]

Nr∏

r=1

Lr(0) (A.27)

and

Pr(2,d|2, fsky) = ρb1ρb2

Nr∏

r=1

Lr(0). (A.28)
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Hence the (unnormalized) posterior is

Pr(N̄s|2,d, fsky) ∝ Θ(N̄s)e
−fskyN̄s

{
1 + fskyN̄s [ρb1 + ρb2 ] + (fskyN̄s)

2ρb1ρb2
}
. (A.29)

In the limit that the evidence for both sources is strong (i.e., ρb1 � 1 and ρb2 � 1) then the

third term in the curly braces dominates and

Pr(N̄s|2,d, fsky) = Θ(N̄s)
fsky

2
(fskyN̄s)

2e−fskyN̄s , (A.30)

which matches the perfect data case with Nb = 2, as expected. In the limit where one blob is

a false candidate, but the other yields a strong evidence (e.g., ρb1 � 1 and ρb2 � 1), then we

recover the perfect data case with Nb = 1.

186



Appendix B

Optimal filters for detecting

cosmic bubble collisions

B.1 Abstract

A number of well-motivated extensions of the ΛCDM concordance cosmological model postulate

the existence of a population of sources embedded in the cosmic microwave background (CMB).

One such example is the signature of cosmic bubble collisions which arise in models of eternal

inflation. The most unambiguous way to test these scenarios is to evaluate the full posterior

probability distribution of the global parameters defining the theory; however, a direct evalua-

tion is computationally impractical on large datasets, such as those obtained by the Wilkinson

Microwave Anisotropy Probe (WMAP) and Planck. A method to approximate the full poste-

rior has been developed recently, which requires as an input a set of candidate sources which

are most likely to give the largest contribution to the likelihood. In this article, we present an

improved algorithm for detecting candidate sources using optimal filters, and apply it to detect

candidate bubble collision signatures in WMAP 7-year observations. We show both theoretically

and through simulations that this algorithm provides an enhancement in sensitivity over previ-

ous methods by a factor of approximately two. Moreover, no other filter-based approach can

provide a superior enhancement of these signatures. Applying our algorithm to WMAP 7-year

observations, we detect eight new candidate bubble collision signatures for follow-up analysis.
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B.2 Introduction

Precision observations of the cosmic microwave background (CMB) provide the most accurate

picture of the early universe that is available currently. The standard ΛCDM concordance

cosmological model – which states that we live in a universe composed mostly of dark energy

and dark matter, whose structure was seeded by adiabatic and very nearly Gaussian and scale-

invariant density perturbations – describes the statistics of temperature fluctuations in the CMB

extremely well (Komatsu et al., 2011; Larson et al., 2011). However, there are many theoretically

well-motivated extensions of ΛCDM that predict detectable secondary signals in the CMB.

One example, which has been the subject of a number of recent studies (Garriga et al., 2007;

Aguirre et al., 2007; Aguirre and Johnson, 2008; Aguirre et al., 2009; Chang et al., 2008, 2009;

Czech et al., 2010; Dahlen, 2010; Freivogel et al., 2009; Larjo and Levi, 2010; Kleban et al., 2011;

Gobbetti and Kleban, 2012), is the signature of cosmic bubble collisions which arise in models

of eternal inflation (see Aguirre and Johnson (2009) for a review). In the model of eternal

inflation, our observable universe is contained inside one member of an ensemble of bubbles.

Collisions between bubbles disturb the homogeneity and isotropy of the very early universe,

leaving possibly detectable imprints on the CMB. In the limit where the number of detectable

collisions on the CMB sky is relatively small, the signature is a set of azimuthally-symmetric

modulations of the temperature (Garriga et al., 2007; Aguirre et al., 2007), varying as the cosine

of the angular distance from the collision centre (Chang et al., 2009), with a size-distribution

peaking at half-sky scales (Freivogel et al., 2009). Other examples of secondary signals arise in

theories with topological defects such as cosmic strings (see e.g. Vilenkin and Shellard (1986) for

a review) or textures (Turok and Spergel, 1990); a less exotic example is the signature of clusters

of galaxies produced by the Sunyaev-Zel’dovich (SZ) effect (Sunyaev and Zeldovich, 1980).

In each of these examples, a population of sources is hypothesized to exist on top of the

background CMB, the members of which have properties drawn from a calculable probability

distribution. The most unambiguous way to test these scenarios is to utilize the most general

predictions for the population of sources on the full-sky, and determine the posterior probability

distribution over the global parameters defining the theory (such as the total number of features

expected, their intrinsic amplitude, etc.). The enormous size of modern CMB datasets, such as

those obtained by the Wilkinson Microwave Anisotropy Probe (Bennett et al., 2003a) (WMAP)

and those currently being obtained by the Planck satellite (Tauber et al., 2010), provide a unique

challenge for such an analysis. Indeed, a direct pixel-based evaluation of the posterior at full

resolution is computationally intractable.

Recently, however, Feeney et al. (2011a,b) outlined a method for approximating the full
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posterior describing source populations in the context of the bubble collision hypothesis. The

method is generalized to the detection of other sources easily. This approach requires pre-

processing of the data to recover a set of candidate sources which are most likely to give the

largest contribution to the likelihood. The preprocessing stage of this method is thus crucial

to its overall effectiveness. Candidate source detection aims to minimize the number of false

detections while remaining sensitive to a weak signal; a manageable number of false detections

is thus tolerated, as the subsequent Bayesian processing step will discriminate these from true

signals. To detect candidate bubble collision signatures, Feeney et al. (2011a,b) employ a suite

of needlet transforms (Marinucci et al., 2008; Scodeller et al., 2011). Needlets are a form of

azimuthally-symmetric wavelet1 defined on the sphere, that render the location and scale of

candidate features simultaneously accessible2. While the effectiveness of needlets for detecting

candidate features has been demonstrated already (Feeney et al., 2011a,b), needlets are generic

and are not adapted to the signal of interest; consequently, they are not optimal. A better

approach is to enhance the effectiveness of candidate detection by exploiting knowledge of the

source signature.

Optimal filters have found widespread application in many branches of physics and signal

processing for the detection of compact objects embedded in a stochastic background. In the

context of astrophysics, the matched filter has been applied to detect point sources and SZ

emission in CMB observations (Tegmark and de Oliveira-Costa, 1998; Haehnelt and Tegmark,

1996). Alternative optimal filters, such as the scale-adaptive filter, have also been derived (Sanz

et al., 2001; Herranz et al., 2002) and applied to CMB observations (Barreiro et al., 2003). In all

of these cases, optimal filters are applied to small patches of the sky, where a flat tangent plane

approximation of the celestial sphere in the region of interest is made. To analyze full-sky CMB

observations these techniques must be extended from Euclidean space to a spherical manifold.

Optimal filter theory has been extended to the sphere by Schaefer et al. (2006) (and applied to

detect SZ emission (Malte Schafer and Bartelmann, 2007)) for the case of azimuthally-symmetric

source signatures and by McEwen et al. (2008) for the general directional setting.

In this article we develop an alternative candidate source detection algorithm using optimal

filters. We focus on the problem of detecting the signatures of bubble collisions in observations

of the CMB, but our approach generalizes to other sources and backgrounds trivially. Since the

angular scale of a typical bubble collision is expected to be large (Freivogel et al., 2009; Aguirre

et al., 2007; Aguirre and Johnson, 2009), tangent plane approximations are not valid, and we

1Note that Mexican needlets (Scodeller et al., 2011) are not formally wavelets since exact synthesis is not
possible, even in theory.

2Needlets are in fact the azimuthally-symmetric restriction of exact steerable wavelets defined on the sphere
(Wiaux et al., 2008), which render the orientation of directional features also accessible.
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instead consider optimal filters defined on the sphere (Schaefer et al., 2006; McEwen et al., 2008).

We describe and evaluate our new candidate source detection algorithm in Sec. B.3 and show it

to be superior to the needlet approach considered previously (Feeney et al., 2011a,b). Finally, we

apply our algorithm to WMAP observations in Sec. B.4, resulting in the detection of a number

of new candidate bubble collision signatures in the WMAP 7-year data. Concluding remarks are

made in Sec. B.5.

B.3 Optimal detection of candidate bubble collisions

Filter based approaches to enhance a signal in a background process are common due to their

effectiveness and efficiency. Indeed, a wavelet transform, such as needlets, is merely a filtering

operation with a carefully constructed set of filter kernels (to allow the exact reconstruction of

the original signal). In this section we consider filters that provide the maximal enhancement of

the source signature in a given stochastic background. The filters are optimal in the sense that

no other filter can yield a greater enhancement in the signal-to-noise ratio (SNR) of the filtered

field. Our optimal-filter-based method is general: in this work, we focus on its application to

the problem of detecting signatures of bubble collisions. Firstly, we define the signatures of the

bubble collision remnants that we search for. We then construct and evaluate optimal filters for

detecting candidate bubble collision signatures when the size of the signature is known, before

describing an algorithm for detecting multiple candidate bubble collision signatures of unknown

and differing sizes.

B.3.1 Bubble collision signatures

Bubble collisions induce a modulative and additive contribution to the temperature fluctuations

of the CMB (Chang et al., 2009), however the modulative component is second order and may

be safely ignored. The additive contribution induced in the CMB by a bubble collision is given

by the azimuthally-symmetric profile

∆Tb(θ, φ) = [c0 + c1 cos(θ)] s(θ; θcrit) ,

when centered on the North pole, where (θ, φ) ∈ S2 denote the spherical coordinates of the unit

sphere S2, with colatitude θ ∈ [0, π] and longitude φ ∈ [0, 2π), and c0 and c1 are free parameters

(not to be confused with the power spectrum monopole and dipole). A typical bubble collision

signature is illustrated in Fig. B.1. Following the parameterization of Feeney et al. (2011a,b), we

describe the bubble collision signature by its amplitude at its centre and at its causal boundary,
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Figure B.1: Panels (a) and (b) show the radial profile and 3D surface plot (lit from top-
left, with specular highlight), respectively, of a bubble collision signature with parameters
{z0, θcrit, θ0, φ0} = {100 µK, 10◦, 0◦, 0◦} (throughout we consider zcrit ∼ 0 µK). In panel (c) the
power spectrum of the bubble collision signature (solid blue curve) is compared with the best-fit
WMAP7+BAO+H0 CMB power spectrum (red dashed curve). Matched filters for azimuthally
symmetric templates promote harmonic modes where the source template power spectrum is
large and suppress modes where the CMB power spectrum is large.

given by z0 = c0 + c1 and zcrit = c0 + c1 cos(θcrit) respectively, and by its size θcrit. We replace

the discontinuous Heaviside step function of the bubble collision profile with a “Schwartz” step

function s(θ; θcrit) that is infinitely differentiable but nevertheless exhibits a smooth but rapid

transition to zero about θcrit. As theoretical work suggests that the temperature discontinuity

parameter should be negligible (Gobbetti and Kleban, 2012; Kleban et al., 2011) (an observation

that is supported by the candidate bubble collision signatures detected previously (Feeney et al.,

2011a,b)), we restrict our attention to zcrit ∼ 0 µK. Bubble collision signatures may occur at

any position on the sky (θ0, φ0) and at a range of sizes θcrit and amplitudes z0. We denote by

∆Ti the temperature contribution induced by a candidate bubble collision i with parameters

{z0, θcrit, θ0, φ0}.
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B.3.2 Optimal bubble collision filters

We define optimal filters to enhance the contributions of compact sources embedded in a stochas-

tic background, focusing on the case of locating candidate bubble collision signatures in the CMB.

Firstly, we discuss filtering on the sphere in general, before defining the optimal matched filter.

We compute the matched filter for detecting bubble collision signatures and compare the SNR

for the matched filter to alternatives, such as needlets and the unfiltered field itself.

Filtering

Filtering on the sphere is the natural analogue of the filtering operation in Euclidean space

and is defined by the projection of a function, such as the CMB temperature fluctuations ∆T ,

onto rotated filter kernels. Consequently, filtering on the sphere is defined through the spherical

convolution

FR(ρ) = 〈∆T , R(ρ)ΨR〉 (B.1)

=

∫

S2

dΩ(θ′, φ′) ∆T (θ′, φ′) [R(ρ)ΨR]∗(θ′, φ′) ,

where ΨR is the filter kernel at scale R, R is the rotation operator describing a rotation by

the Euler angles ρ ∈ SO(3), 〈·, ·〉 denotes the inner product on the sphere, ∗ denotes complex

conjugation and dΩ(θ, φ) = sin θ dθ dφ is the usual rotation-invariant measure on the sphere.

The filtering operation given by Eq. (B.1) is general in the sense that directional filter kernels

are considered. Since we are concerned with bubble collision signatures, which are azimuthally-

symmetric, we henceforth restrict our attention to azimuthally-symmetric filter kernels such that

ΨR(θ, φ) = ΨR(θ). In this case, the filter kernel is invariant under rotations about its own axis

of symmetry and the set of distinct rotations is restricted from the rotation group SO(3) to the

sphere S2, i.e. ρ = (θ, φ) ∈ S2.

Just like in the Euclidean setting, filtering on the sphere can be computed more efficiently in

harmonic space than through an evaluation of Eq. (B.1) by direct quadrature. The CMB tem-

perature fluctuations may be represented by their expansion in the basis of spherical harmonics

Y`m, given by

∆T (θ, φ) =

∞∑

`=0

∑̀

m=−`

a`mY`m(θ, φ) , (B.2)

where the harmonic coefficients are given by the usual projection onto the basis functions:

a`m = 〈∆T , Y`m〉. In practice, we consider a maximum band-limit `max, such that the summation

over ` in Eq. (B.2) may be truncated to `max. Similarly, the filter kernel may be decomposed

into its spherical harmonic expansion, with coefficients given by (ΨR)`m = 〈ΨR, Y`m〉. For an
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azimuthally-symmetric kernel the filter coefficients are non-zero for harmonic indices m = 0 only,

i.e. (ΨR)`m = δm0(ΨR)`0, where δij is the Kronecker delta symbol. In this setting, the harmonic

coefficients of the filtered field are given by

(FR)`m =

√
4π

2`+ 1
a`m (ΨR)

∗
`0 . (B.3)

Fast spherical harmonic transforms (e.g. Driscoll and Healy (1994); Górski et al. (2005); Doroshke-

vich et al. (2005); McEwen and Wiaux (2011)) may then be employed to reduce the complexity

of filtering with an azimuthally-symmetric kernel from O(`max
4) to O(`max

3).3

The purpose of filtering the observed signal on the sphere is to enhance source signatures

relative to the stochastic background; we thus require a quantitive measure of the effectiveness

of filtering. We define the SNR of the filtered field for scale R by the ratio of its mean to its

dispersion in the presence of a source located at (θ0, φ0):

ΓR =
µR(θ0, φ0)

σR(θ0, φ0)
, (B.4)

where the mean and variance of the filtered field are defined, respectively, by

µR(θ, φ) = E[FR(θ, φ)]

and

σ2
R(θ, φ) = E[|FR(θ, φ)|2]− µ2

R(θ, φ) .

Optimal filters

The observed CMB temperature fluctuations ∆T are assumed to be comprised of a number of

compact sources ∆Ti, such as bubble collision signatures, embedded in a stochastic background

noise process n:

∆T (θ, φ) =
∑

i

∆Ti(θ, φ) + n(θ, φ) .

We decompose the sources into their amplitude Ai and normalized template profile τi by

∆Ti(θ, φ) = Ai τi(θ, φ);

for the case of bubble collision signatures we make the association A = z0. The stochastic noise

process n is assumed to be zero-mean, isotropic and homogeneous and is defined by its power

3Filtering with directional filter kernels can also be performed more efficiently in harmonic space than in real
space (Risbo, 1996; Wandelt and Górski, 2001; McEwen et al., 2007).
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spectrum:

E[n`mn
∗
`′m′ ] = C` δ``′ δmm′ ,

where n`m = 〈n, Y`m〉. The source population is the signal of interest, hence the noise is

comprised of primary and secondary CMB anisotropies.

We filter the observed CMB temperature fluctuations ∆T with the aim of enhancing the

source contributions ∆Ti relative to the background noise n. The matched filter ΨMF
R is defined

to maximize the SNR of the filtered field given by Eq. (B.4), while ensuring that the amplitude of

the filtered field at the source position gives an unbiased estimator of the source amplitude. Thus,

the matched filter defined on the sphere is recovered by solving the constrained optimization

problem:

min
w.r.t.ΨR

σ2
R(θ0, φ0) such that µR(θ0, φ0) = A .

The resulting matched filter is given by (McEwen et al., 2008)

(ΨMF
R )`m =

τ`m
α C`

, (B.5)

where

α =
∑

`m

C−1
` |τ`m|2

and (ΨMF
R )`m = 〈ΨMF

R , Y`m〉. Here and subsequently we use the shorthand notation
∑
`m =

∑`max

`=0

∑`
m=−`. On inspection of the filtering operation in harmonic space given by Eq. (B.3),

the matched filter given by Eq. (B.5) is justified intuitively since the filter promotes harmonic

modes where the source template τ`m is large and suppresses modes where the noise power C`

is large.

In Fig. B.2 we plot the matched filters that are optimized to bubble collision signatures of

varying size embedded in a CMB background defined by the ΛCDM power spectrum that best fits

WMAP 7-year, baryon acoustic oscillations and supernovae observations (hereafter we refer to

this spectrum as the best-fit WMAP7+BAO+H0 power spectrum) (Larson et al., 2011). Notice

that on smaller scales the matched filter contains a central broad hot region to enhance the main

bubble collision contribution, surrounded by hot and cold rings to enhance the collision edge.

However, on larger scales notice that the matched filter contains only the hot and cold rings

that enhance the collision edge. Since the CMB has more power on large scales, the matched

filters on large scales do not look for the large-scale features of the bubble collision signature

but rather the transition region near the location where the template goes to zero. Note that

the transition region is the best place to look even though the matched filter is constructed for
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templates with zcrit ∼ 0 µK.

Alternative optimal filters have also been proposed, such as the scale-adaptive filter, defined

in Euclidean space by Sanz et al. (2001) and Herranz et al. (2002) and extended to the sphere

by Schaefer et al. (2006) and McEwen et al. (2008). Like the matched filter, the scale-adaptive

filter minimizes the variance of the filtered field while still providing an unbiased estimate of

the source amplitude, but it also imposes a local peak in the filtered field over scale R. Since

an additional constraint is imposed when solving the optimization problem that defines the

scale-adaptive filter, the SNR for the scale-adaptive filter is inevitably lower than that for the

matched filter. However, in the case of (i) a scale-invariant background and (ii) a template

profile that changes size simply through a scaling of θ, the peak in the scale-adaptive filter field

can help to find sources of unknown size. When criteria (i) and (ii) hold, the scale-adaptive

filter for a given source size can be constructed by scaling the scale-adaptive filter for a source

of a different size. A filter of incorrect size (since the underlying size of the source is unknown),

and scaled variants of it, may then be applied; the peak imposed in scale when constructing

the filter can then be used to estimate the unknown source size. However, neither criterion

holds for the case of bubble collision signatures embedded in the CMB. Furthermore, although

the scale-adaptive filter has been derived on the sphere by Schaefer et al. (2006) and (McEwen

et al., 2008), small-angle approximations are made in these derivations; hence the scale-adaptive

filter constraints may break down for sources of very large size, such as the bubble collision

signatures of interest. Indeed, we have performed numerical experiments that have shown this

to be the case. Consequently, we do not consider the scale-adaptive filter further. The problem

of detecting sources of unknown size is considered further in Sec. B.3.3.

Signal-to-noise ratio comparison

We compare the SNR for the matched filter, which by definition is optimal, with the SNR for

needlets and the unfiltered field. For a arbitrary filter ΨR, such as needlets, the SNR defined by

Eq. (B.4) becomes

ΓΨ
R =

A
∑
`m τ`m(ΨR)

∗
`m√∑

`m C`
∣∣(ΨR)`m

∣∣2
,

where (ΨR)`m = 〈ΨR, Y`m〉. For the case of the matched filter this expression reduces to

(McEwen et al., 2008)

ΓMF
R = α1/2 A .
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(a) θcrit = 5◦ (b) θcrit = 10◦

(c) θcrit = 20◦ (d) θcrit = 30◦

(e) θcrit = 60◦ (f) θcrit = 90◦

Figure B.2: Matched filters optimized to bubble collision signatures of varying size embedded in
a ΛCDM CMB background defined by the best-fit WMAP7+BAO+H0 power spectrum.
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Finally, we also consider the SNR of the unfiltered field, defined by the ratio of its mean and

dispersion at the location of a source, given by

Γorig =
A
∑
`m

√
2`+1
4π

(`−m)!
(`+m)! τ`m√∑

`
2`+1
4π C`

.

The SNRs computed for bubble collision signatures of varying size embedded in a CMB back-

ground defined by the ΛCDM best-fit WMAP7+BAO+H0 power spectrum are plotted in Fig. B.3 (a).

Notice the superiority of the matched filter to both needlets and the original unfiltered field.

B.3.3 Candidate bubble collision detection

We have selected the optimal matched filter as the filter of choice, since the matched filter

optimizes the SNR of the filtered field at the position of a source, but thus far we have only

considered source profiles of known size. Here we describe an algorithm using the matched filter

to detect multiple sources of unknown and differing size. The algorithm proceeds as follows.

1. Construct matched filters optimized to the source signatures for a grid of scales, i.e.

R ∈ {θkcrit}
Nθcrit
k=1 .

2. Filter the sky with the matched filter for each scale R.

3. Compute significance maps

SR(θ, φ) =
|FR(θ, φ)− µR(θ, φ)|

σR(θ, φ)
, (B.6)

for each filter scale R. The mean and dispersion of the filtered field is computed over

realisations of the noise process in the absence of sources.

4. Threshold the significance maps for each filter scale R, setting all values of SR(θ, φ) < NσR

to zero.

5. Find localized peaks in the thresholded significance maps for each filter scale R and asso-

ciate each with a potential detection of a source.

6. For each potential detection at a given scale R, look across adjacent scales Radj ∈ {Radj ∈

{θkcrit}
Nθcrit
k=1 : |Radj −R| ≤ θadj} and eliminate the potential detection if a stronger potential

detection is made on an adjacent scale. Potential detections are eliminated as follows. If

adjacent scales contain an overlapping non-zero thresholded region, and if the pixel with

the maximum absolute value of the filtered field in the thresholded region is the same sign
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Figure B.3: SNRs of bubble collision signatures of varying size with amplitude A = z0 = 100 µK
embedded in a ΛCDM CMB background defined by the best-fit WMAP7 + BAO + H0 power
spectrum. SNR curves are plotted for matched filters (solid blue curve), needlets with scaling
parameter B = 1.8 for a range of needlet scales j (dot-dashed black curves) and for the unfiltered
field (dashed red curve). Notice the clear superiority of the matched filter. In panel (b) SNR
curves for the matched filters constructed at a given scale and applied at all other scales are also
shown (light solid blue curves). The scale for which the filters are constructed may be read off
the plot from the intersection of the heavy and light solid blue curves. Provided the θcrit grid is
sampled sufficiently densely, the matched filters remain superior to needlets.
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as the corresponding value at the current scale, but greater in magnitude, then discard

the potential detection at the current scale. Otherwise retain the potential detection and

classify it as a detected source.

7. For all detected sources, estimate the parameters of the source size, location and amplitude,

using the corresponding filter scale, peak position of the thresholded significance map and

amplitude of the filtered field, respectively.

The construction of optimal filters is implemented in the S2FIL code (McEwen et al., 2008)

(which in turn relies on the codes S2 (McEwen et al., 2007) and HEALPix (Górski et al., 2005)),

while the COMB code (McEwen et al., 2008) has been used to simulate bubble collisions signatures

embedded in a CMB background.4 The candidate object detection algorithm described here is

implemented in a modified version of S2FIL that will soon be made publicly available.

There is no theoretical guarantee that the peak in the filtered field across scales will coincide

with the scale of the unknown source. Nevertheless, for bubble collision signatures embedded in

the CMB we have found, through numerical simulations, that there is indeed such a peak at the

scale of an underlying source, as illustrated in Fig. B.4. Thus, the algorithm outlined above is

an effective approach to detecting multiple bubble collision signatures of unknown and differing

size. In situations where a peak does not occur at the scale of an underlying source, numerical

simulations may be performed to fit the curve of the filtered field across scales to an underlying

source size. The algorithm outlined above would therefore remain applicable, with only minor

alterations.

Although this algorithm considers a grid of candidate scales R ∈ {θkcrit}
Nθcrit
k=1 , it is likely

that a source may exist at scales between the samples of the grid. It is thus important to

examine how sensitive the matched filter is to small errors in the source size. In Fig. B.3 (b)

we plot SNR curves for matched filters constructed on the grid of candidate scales for bubble

collision signatures embedded in the CMB. A degradation in the SNR away from the scale used

to construct each filter is clearly apparent; however, provided that the θcrit grid is sampled

sufficiently densely, the matched filters remain effective and are superior to needlets.

The algorithm described above has just two parameters. The first is the distance θadj for

which scales are considered to be adjacent, which can be set relative to the grid of candidate sizes.

The second parameter is the threshold level NσR , which may be allowed to vary for each filter

scale R. The threshold levels may be calibrated from simulations in order to allow a manageable

number of false detections, while remaining sensitive to weak source signals.

4S2FIL, S2 and COMB are available from http://www.jasonmcewen.org/, while HEALPix is available from http:

//healpix.jpl.nasa.gov/.
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Figure B.4: Amplitude of the filtered field at the position of a bubble collision signature versus
the scale used to construct the corresponding matched filter. The underlying bubble collision
signature has parameters {z0, θcrit, θ0, φ0} = {100 µK, 20◦, 0◦, 0◦} and is embedded in a ΛCDM
CMB background defined by the best-fit WMAP7 + BAO + H0 power spectrum. The solid
curve shows the mean value obtained over 100 CMB realizations, while the error bars show
the corresponding standard deviation. Notice that a peak is clearly visible at the scale of
the underlying bubble collision signature. Furthermore, the amplitude of the filtered field at
the source scale gives an unbiased estimate of the collision amplitude, as imposed through the
construction of the matched filter.
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B.4 Bubble collision candidates in WMAP 7-year obser-

vations

In this section we apply the optimal-filter-based source detection algorithm described in Sec. B.3

to WMAP 7-year observations of the CMB to search for signatures of bubble collisions. Firstly,

we construct optimal filters matched to WMAP observations and then calibrate the detection

algorithm on a realistic WMAP end-to-end simulation. We then study the sensitivity of the

optimal-filter-based detection algorithm. Finally, we apply the algorithm to WMAP observa-

tions, resulting in the detection of a number of new candidate bubble collision signatures.

B.4.1 Optimal bubble collision filters for WMAP

We analyze foreground-cleaned WMAP 7-year W-band observations since this band has the

highest resolution beam (with full-width-half-maximum FWHM = 13.2 arcmin) and suffers

from the least foreground contamination (Jarosik et al., 2011). We restrict our analysis to

the band-limit `max = 256 since this is sufficient to represent the bubble collision signatures

of interest, which are relatively large scale. The stochastic background in which the bubble

collision signatures live, and that is used to derive matched filters, is defined by the CMB power

spectrum, where we assume the best-fit WMAP7+BAO+H0 best-fit ΛCDM power spectrum.

The noise considered in the derivation of the matched filter is assumed to be homogenous and

isotropic, whereas WMAP observations exhibit anisotropic noise that varies over the sky. We

therefore neglect WMAP noise when constructing optimal filters. This approximation is valid

since the W-band instrumental noise is subdominant relative to the CMB contribution in the

harmonic region of interest (`max ≤ 256).5

The optimal filters matched to WMAP W-band observations are then computed by Eq. (B.5),

where the noise power spectrum C` is given by the CMB spectrum, and the harmonic coeffi-

cients of the normalized template profile τ`m are modulated by the Legendre coefficients of an

azimuthally-symmetric Gaussian beam with FWHM = 13.2 arcmin. The matched filters com-

puted in this setting are very similar to those displayed in Fig. B.2, that were computed in the

absence of a beam.6

For the algorithm to detect candidate bubble collision signatures of unknown and varying

size described in Sec. B.3.3, we must construct matched filters for a grid of scales. We consider

5We have tested the validity of this assumption by successfully detecting synthetic bubble collision signatures
embedded in simulated WMAP observations that do include anisotropic noise.

6The Gaussian beam employed in this work is an approximation to the true W-band beam (Jarosik et al.,
2011). As the matched filters computed in the absence of a beam are very similar to those computed with a
Gaussian beam, any effects due to the approximated beam are negligible.
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the scales R ∈ { 1◦, 1.5◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦, 9◦, 10◦, 12◦, 14◦, 16◦, 18◦, 20◦, 22◦, 24◦,

26◦, 28◦, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦, 65◦, 70◦, 75◦, 80◦, 85◦, 90◦}. The SNR curves for the

matched filters constructed for these scales are shown in Fig. B.3 (b) (albeit in the absence of a

beam, although the SNR curves do not change markedly when these effects are included). This

grid of scales is thus sufficiently sampled to ensure that the matched filters remain effective for

scales between the samples of the grid.

B.4.2 Calibration

It is necessary to calibrate the optimal-filter-based bubble collision detection algorithm to re-

alistic WMAP observations. Throughout the calibration we apply the WMAP KQ75 mask

(Gold et al., 2011) since we will adopt this conservative mask when analyzing the WMAP data.

Firstly, for each scale R, we use 3,000 Gaussian CMB WMAP simulations with W-band beam

and anisotropic instrumental noise to compute the mean and dispersion of the filtered field in

the absence of sources, as required to compute significance maps of each filtered field through

Eq. (B.6). Based on the sampling of the grid of scales we set the adjacency parameter to

θadj = 5◦. We then calibrate the threshold levels NσR for each scale R from a realistic WMAP

simulation that does not contain bubble collision signatures. The thresholds are chosen to al-

low a manageable number of false detections while remaining sensitive to weak bubble collision

signatures. For this calibration we use a complete end-to-end simulation of the WMAP experi-

ment provided by the WMAP Science Team (Gold et al., 2011). The temperature maps in this

simulation are produced from a simulated time-ordered data stream, which is processed using

the same algorithm as the actual data. The data for each frequency band is obtained separately

from simulated sources including diffuse Galactic foregrounds, CMB fluctuations, realistic noise,

smearing from finite integration time, finite beam size, and other instrumental effects. We use

the foreground-reduced W-band simulation for calibration. The threshold levels NσR are selected

to allow at most two false detections on each scale on this simulated map (recall that detections

on one scale can be eliminated by stronger detections made on adjacent scales). When running

the fully-calibrated candidate bubble collision detection algorithm on the WMAP W-band end-

to-end simulation, 13 false detections are made (note that this is an identical number of false

detections to that obtained using needlets (Feeney et al., 2011a,b)). Processing a single map

through the algorithm, including filtering at all 33 scales, requires on the order of seconds on a

standard desktop computer.
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B.4.3 Sensitivity

Before applying the calibrated candidate bubble collision detection algorithm to WMAP ob-

servations, we first assess its sensitivity by applying it to simulated observations where bubble

collision signatures are present. We repeat the sensitivity analysis performed by Feeney et al.

(2011a,b), where we lay down known bubble collision signatures on low-noise and high-noise

regions of the sky, given by locations (θ0, φ0) = (57.7◦, 99.2◦) and (θ0, φ0) = (56.6◦, 193.0◦) re-

spectively, where throughout we use Galactic coordinates. For each collision scale and amplitude

that we consider, in each of the low-noise and high-noise regions, we simulate three Gaussian

CMB WMAP W-band observations. We then run the calibrated bubble collision detection al-

gorithm on these six simulations. If the underlying bubble collision signature is detected in all

simulations, we classify the amplitude and scale parameter pair as living in an exclusion region.

If the underlying bubble collision is detected in some but not all simulations, we classify the

parameter pair as living in a sensitivity region. If the underlying bubble collision is not detected

in any simulation, we classify the parameter pair as living in an unprobed region. These regions

describe the sensitivity of the bubble collision detection algorithm and are plotted in Fig. B.5

for a range of scale and amplitude parameter pairs.

Bubble collision signatures that lie in exclusion regions would certainly be detected by the

optimal-filter-based bubble collision detection algorithm provided they were not significantly

masked, while collision signatures that lie in sensitivity regions would be detected if they were

in a favorable location on the sky. When compared to the exclusion and sensitivity regions

recovered using needlets (Feeney et al., 2011a,b), the regions recovered using optimal filters are

extended to lower temperatures by a factor of ∼ 1.7 in ∆T for scales θcrit ∼ 10◦ and most

likely further for larger scales (note that the regions plotted in (Feeney et al., 2011a,b) are for

∆T/T0, where T0 is the average temperature of the CMB, while here they are plotted for ∆T ).

Optimal filters thus provide an enhancement in sensitivity by a factor of approximately two when

compared with needlets, in line with expectations from the SNR curves plotted in Fig. B.3. This

improvement in sensitivity will be important for uncovering the necessarily weak bubble collision

signatures that may be embedded in CMB observations.

B.4.4 Candidate bubble collisions

The calibrated bubble collision detection algorithm is applied to foreground-cleaned WMAP

7-year W-band observations (Jarosik et al., 2011), with the conservative KQ75 mask applied

(Gold et al., 2011). Sixteen candidate bubble collision signatures are detected. The WMAP

W-band data that are analyzed and the detected bubble collision candidates are plotted on the
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Figure B.5: Exclusion (black) and sensitivity (grey) regions for the optimal-filter-based bubble
collision detection algorithm. Bubble collision signatures that lie in exclusions regions would cer-
tainly be detected by the algorithm provided they were not significantly masked, while collision
signatures that lie in sensitivity regions would be detected if they were in a favorable location
on the sky.
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full-sky in Fig. B.6. A list of the parameters recovered for each detected candidate is given in

Table B.1, where the bubble collision candidate labels match those of Fig. B.6 (c). In Table B.1

we also give the significance level of each detection and state whether a feature with similar

parameters was detected using needlets (Feeney et al., 2011a,b). We detect eight new candidate

bubble collisions that have not been reported previously.

As a very preliminary analysis to check that residual foreground contributions are not respon-

sible for the detected candidate bubble collision signatures, we also apply the bubble collision

detection algorithm to the foreground-cleaned V-band and Q-band WMAP 7-year observations.

Since foreground contributions are frequency-dependent, one would expect a large difference

between the regions detected on different bands if they were due to foreground contributions.

Whether each candidate bubble collision signature is detected in the other WMAP bands is

listed in the final two columns of Table B.1. All of the new regions detected in the W-band are

detected in at least one of the other bands, suggesting residual foregrounds are unlikely to be

responsible for the new bubble collision candidates that we detect.

Let us remark that the combination of bubble collision candidates with labels 14 and 15 look

somewhat like a dipole contribution. However, this resemblance is likely to be a coincidence:

we know that the matched filters on these large scales enhance ring-like features (see Fig. B.2).

Indeed, since the prior on the expected angular size of bubble collision signatures in the CMB

is peaked at 90◦ (Freivogel et al., 2009), very large candidate bubble collisions are of particular

interest. A subsequent Bayesian analysis, following the method of Feeney et al. (2011a,b), will

be able to discriminate whether these features are spurious ΛCDM fluctuations, or else provide

evidence for the bubble collision hypothesis.
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(a) WMAP 7-year W-band observations

(b) Candidate bubble collision signatures

(c) Labelled candidate bubble collision signatures

Figure B.6: WMAP data analyzed by the bubble collision detection algorithm and the result-
ing candidate bubble collision signatures detected (in units of mK). In panels (a) and (b) the
conservative KQ75 mask is applied. Full-sky maps are plotted using the Mollweide projection.
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B.5 Conclusions

The problem of detecting the existence of a population of sources embedded in the CMB is of

widespread interest. The most unambiguous method of doing so is through a direct evaluation

of the full posterior probability distribution of the global parameters of the theory giving rise

to the source population. However, such an approach is computationally impractical for large

datasets, such as WMAP and Planck. A method to approximate the full posterior has been

developed recently by Feeney et al. (2011a,b). This approach requires preprocessing of the data

to recover a set of candidate sources which are most likely to give the largest contribution to

the likelihood. The preprocessing stage of this method is thus crucial to its overall effectiveness.

Previously needlets were used for candidate source detection (Feeney et al., 2011a,b). In this

article we have developed a new algorithm, based on optimal filtering, to detect candidate sources

of unknown and differing angular sizes embedded in full-sky observations of the CMB.

This method is optimal in the sense that no other filter-based approach can provide a supe-

rior enhancement of the source contribution. However, as we have emphasized, the parameters

of our algorithm are set to allow some false detections: there is no guarantee that the candidates

picked out are the signatures of bubble collisions. The filters will also respond to similar tem-

perature patterns resulting from rare ΛCDM fluctuations. A further Bayesian model selection

step (implementing Occam’s razor via a self-consistent penalty for extra model parameters) is

required to determine the most likely explanation for the data – be it a bubble collision, a rare

statistical fluctuation of ΛCDM or something else entirely.

Although our source detection algorithm has general applicability, in this case we have applied

it to the problem of detecting candidate bubble collision signatures in WMAP 7-year observa-

tions, where we have demonstrated its superiority. After calibrating our algorithm on a realistic

WMAP end-to-end simulation, we have shown both theoretically and through simulations that

it provides an enhancement in sensitivity over the previous needlet approach by a factor of

approximately two, for an identical number of false detections on the WMAP end-to-end simu-

lation. Applying our algorithm to WMAP 7-year observations, we detect eight candidate bubble

collision signatures that have not been reported previously.

In a follow-up analysis, we intend to compute the full posterior probability distribution of

the number of bubble collision signatures in WMAP data using the method developed by Feeney

et al. (2011a,b), in light of these new candidate bubble collision signatures. However, this method

was previously restricted to candidate collisions of size θcrit ≤ 11◦ due to computational mem-

ory requirements, while we have detected a number of candidate bubble collision signatures at

larger scales. To handle these large candidate bubble collision signatures, an adaptive-resolution
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refinement of the method has been developed which processes each candidate at the highest reso-

lution possible given its size and the available computational resources. It was previously shown

that the WMAP 7-year data do not warrant augmenting ΛCDM with bubble collisions (Feeney

et al., 2011a,b). However, the enhanced sensitivity of our optimal-filter-based candidate collision

detection algorithm will improve the accuracy of the approximated posterior distribution, and

has the potential to uncover evidence for bubble collisions in WMAP observations of the CMB,

as well as in next-generation datasets.
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R. H. Lupton, T. A. McKay, P. Kunszt, J. A. Munn, L. O’Connell, J. Peoples, J. R. Pier,

M. Richmond, C. Rockosi, D. P. Schneider, C. Stoughton, D. L. Tucker, D. E. Vanden Berk,

B. Yanny, D. G. York, and SDSS Collaboration. The Three-Dimensional Power Spectrum

of Galaxies from the Sloan Digital Sky Survey. Astrophys. J., 606:702–740, May 2004. doi:

10.1086/382125.

Max Tegmark. How to make maps from CMB data without losing information. Astrophys. J.,

480:L87–L90, 1997a. doi: 10.1086/310631.

Max Tegmark. How to measure CMB power spectra without losing information. Phys. Rev.,

D55:5895–5907, 1997b. doi: 10.1103/PhysRevD.55.5895.

Max Tegmark and Angelica de Oliveira-Costa. Removing point sources from CMB maps. 500:

L83–L86, 1998.

Roberto Trotta. Applications of Bayesian model selection to cosmological parameters. Mon.

Not. R. Astron. Soc., 378:72–82, 2007. doi: 10.1111/j.1365-2966.2007.11738.x.

227



Michael S. Turner. A Tilted universe (and other remnants of the preinflationary universe). Phys.

Rev., D44:3737–3748, 1991. doi: 10.1103/PhysRevD.44.3737.

Neil Turok. Global Texture as the Origin of Cosmic Structure. Phys. Rev. Lett., 63:2625, 1989.

doi: 10.1103/PhysRevLett.63.2625.

Neil Turok and David Spergel. Global texture and the microwave background. Phys. Rev. Lett.,

64:2736, 1990. doi: 10.1103/PhysRevLett.64.2736.

Neil Turok and David N. Spergel. Scaling solution for cosmological sigma models at large N.

Phys. Rev. Lett., 66:3093–3096, 1991. doi: 10.1103/PhysRevLett.66.3093.

P. Vielva, E. Martinez-Gonzalez, M. Cruz, R. B. Barreiro, and M. Tucci. Cosmic microwave

background polarization as a probe of the anomalous nature of the cold spot. Mon. Not. R.

Astron. Soc., 410:33–38, January 2011. doi: 10.1111/j.1365-2966.2010.17418.x.

A. Vilenkin and E. P. S. Shellard. Cosmic strings and other topological defects. Cambridge

University Press, 1986.
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