Today:

Recap on 1st lecture:

- Basic properties of the ISM
 - HII regions, dark nebulae, reflection nebulae
 - Cold, warm and hot phases of the ISM (properties etc.)
- Look in detail at HII regions:
 - Ionization/recombination, emission/absorption
 - Thermal balance (heating/cooling)
 - Sizes

Vela Supernova Remnant

Data from the Digitized Sky Survey Image processing by Davide De Martin

ISM:

built from remains of stars
(i) during life: stellar winds (slow and steady during lifetime)
(ii) end of life: elected massive envelopes (PN_novae)

Can we classify the ISM?

 <u>Diffuse emission nebulae</u>: When in the vicinity of OB-type stellar associations (i.e. near young stars), they become <u>ionized</u> are called <u>HII</u> <u>regions</u>:

- The gas emits photons due to recombination.
- Generally found near the plane of the Galaxy, at heights of \geq 50 pc.
- Masses ~ 100–10000 M_☉; Sizes ~ few pc; Temps ~ 10000 K; Densities ~ 10³ hydrogen ions/cm³
 (compare with air density of 10¹⁹/cm³, or stellar atmosphere ~ 10¹⁵/cm³)

• <u>Dark clouds</u> are denser and colder $>10^4$ /cm³ and T ~ 10–100K - are potential sites of <u>star-formation</u>. They block most optical radiation.

 H_2 molecules form within them on the surface of dust grains. Variety of sizes: pc-sized up to <u>Giant Molecular Clouds</u>

 <u>Reflection nebulae</u> near bright stars appear bluish due to the efficient scattering, by dust particles, of blue-wavelength light (say 400 nm) – same process as that which makes the sky blue

Distribution of Cold Gas in the ISM

Distance = 450 pc Diameter ~ 1° (similar to the full moon)

Composition:

- Ionized gas:
- H ~ 90% (by number)
- He ~ 10% (by number)
- <1% Heavier elements

• Dust

The Trapezium Cluster

dominant star: θ^1 Ori-C spectral type O6V: T ~ 20 000 K

emits a great number of energetic photons that ionize the gas

Bok globules

relatively much denser that general diffuse ISM clouds:

densities ~10⁴ - 10⁹ particles per cm³

- made up of atoms, molecules and <u>dust particles</u>
- have low temperatures of 10-100 K.

Gamma CrA

Dark Nebula Bernes 157

NGC 6729

Double Star BRS 014

Reflection Nebula IC 4812

NGC 6723

Reflection Nebula NGC 6726/6727

Variable Nebula

Epsilon CrA

Copyright © 2005 Pearson Prentice Hall, Inc.

ISM: average properties

 Mean density of ISM (in our Galaxy) ~ 10⁶ particles/m³ (1 particle/cm³) but is HIGHLY CLUMPED: filling factor ~3%.

• The GAS is mainly:

Hydrogen (90%) Helium (10%) metals (C,N,O, ... Fe) <1% by number

- Dust grains : gas atoms ratio = approx 1 : 10¹²
- Dust grains have a power-law size distribution radii ~ $5 \times 10^{-9} - 2 \times 10^{-7}$ m (smaller grains are more abundant)

A global model: the 3+1 phases of the ISM

• Cold, neutral medium (CNM)

 $n \sim 1-10^3$ /cm³, T < 100 K, volume fraction: $\sim 1-5\%$

- Hot, ionized medium (HIM)
 n ~ 10⁻⁴-10⁻² /cm³, *T* ~ 10⁶-10⁷ K, volume fraction: ~30-70%
- Warm interface media
 - Warm ionized medium (WIM)

 $n \sim 0.01 \text{ /cm}^3$, $T \sim 1000 \text{ K}$, volume fraction: $\sim 20-50\%$

hydrogen ionization fraction ($X_{\rm H}$) ~ 70%

 Warm neutral medium (WNM) n ~ 0.1–10 /cm³, T ~ 1000–5000 K, volume fraction: ~10–20% hydrogen ionization fraction (X_H) ~ 10%

Dark neutral (molecular) clouds

 $n \sim 10^3 \Box 10^6$ /cm³, $T \sim 10 \Box 50$ K, volume fraction: <1%

A global view

FIG. 2

Hot, ionized medium (HIM)

Arises through the heating and energy input from overlapping Supernova explosions and their remnants: directly seen in X-rays.

Optical = red and green X-ray = blue

Hot, ionized medium (HIM)

Arises through the heating and energy input from overlapping Supernovae explosions and their remnants: directly seen in X-rays.

- Supernovae occur in the Galactic plane: causes hot gas to rise to high distances above/below the plane of the Galaxy
- Gives rise to a halo of hot gas around the galaxy.
- This gas then cools and falls back to the galactic plane, and is replenished by further SN: the Galactic Fountain model.

Cold, neutral medium (CNM)

• dominated by diffuse clouds with $n \sim 10^{1}-10^{3}$ /cm³, $T \sim 30-100$ K, individual cloud radii = few pc

• cold enough that simple molecules can form, e.g. H_2 and CO.

• <u>however</u>, most INTERSTELLAR MOLECULES are mainly found in the denser DARK CLOUDS (Barnard Objects and Bok Globules) with $n \sim 10^6-10^7$ /cm³ and $T \sim 10$ K.

• Still denser regions are the GIANT MOLECULAR CLOUDS with $n \sim 10^{10}$ /cm³ and $T \sim 50$ K. These are associated with sites of new STAR FORMATION.

THE MILKY WAY PROJECT

www.milkywayproject.org

Today:

HII regions:

- Ionization/recombination, emission/absorption
- Thermal balance (heating/cooling)
- Sizes
- The addition of metals
 - Forbidden lines
 - Metal line cooling
 - Density/temperature diagnostics

Rosette Nebula

2 O-stars

Photoionisation

Photoionisation: the removal of electrons from gas atoms by photons.

H + (ionizing photon) \rightarrow p + e⁻ (Eqn. 1)

Photoionisation

13.6 eV = λ < 912 Å **Photoionisation**: the removal of electrons from gas atoms by photons.

H + (ionizing photon) \rightarrow p + e⁻ (Eqn. 1)

For Hydrogen (most abundant atom) photons need to have an energy of *at least* **13.6 eV** (corresponding to $\lambda < 912$ Å)

13.6 eV therefore = the "<u>lonisation Potential</u>" of Hydrogen (*I*_H) = called **one Rydberg**

Only stars with T > 20000 K (spectral types O and B) emit 'ionising' photons

Recombination

Attraction between protons and electrons leads to the recapture of the electron.

 $p + e^- \rightarrow H + (ionizing photon)$

Recombination cascade in H-atom

Planetary Nebula: NGC 3242 (ESO 1.5-m in Chile)

Blue = recombination lines of H and He Red = forbidden lines of 'metals'

To a good approx. the nebula contains only neutral H, protons (p), and electrons (e⁻)

The energy of the free electrons can be "anything" above 13.6 eV

The *total* energy available for photoionization depends on the *total* number of photons.

This is a function of the effective temperature (T_{eff}) of the ionizing star

The energy is spread out (**shared**) between all the particles (by collisions) and acquires a single '<u>kinetic temperature</u>' for *all 3 types* of particle. We say the *plasma* becomes '<u>thermalized</u>'.

The distribution of velocities within the gas can now be described by a <u>'Maxwellian distribution</u>'

The Maxwellian Distribution

Photoionisation rate [number of events/m³/sec]:

 $N_{\rm PI} = a n_{\rm HI} J$ [m⁻³ s⁻¹]

a = photoionsation cross section (= $6.8 \times 10^{-22} \text{ m}^2$) **n**_{HI} = number density of neutral H (HI) **J** = rate of incident ionising photons (with E >13.6 eV) (m⁻² s⁻¹)

cross section = likelihood (probability) of interaction between particles

Photoionisation rate [number of events/m³/sec]:

 $N_{\rm PI} = a n_{\rm HI} J$ [m⁻³ s⁻¹]

a = photoionsation cross section (= $6.8 \times 10^{-22} \text{ m}^2$) **n**_{HI} = number density of neutral H (HI) **J** = rate of incident ionising photons (with E >13.6 eV) (m⁻² s⁻¹)

Recombination rate [number of events/m³/sec]:

$$N_{\rm R} = n_{\rm e} n_{\rm p} \alpha_n = n_{\rm e}^2 \alpha_{\rm R}$$
 [m⁻³ s⁻¹]

 $n_{\rm e}$, $n_{\rm p}$ = number density of electrons & protons (in equilibrium $n_{\rm e} = n_{\rm p}$) $\alpha_{\rm R}$ = recombination coefficient = 2×10⁻¹⁶ $T_{\rm e}^{-3/4}$ m³ s⁻¹]
Ionisation balance

Equilibrium occurs when there is a balance between the forward and backward rates

i.e. Photoionization rate, N_{PI} = Recombination rate, N_{R}

H + (ionising photon) \leftrightarrow p + e⁻

The degree of ionisation can be described as:

 $n_{\rm e} = n_{\rm p} = X n$

X = fraction of *ionised* H atoms
 n = number density of H nuclei (proton+neutral atom densities)

 $n_{\rm HI} = n - X n$

 $n_{\rm HI}$ = number density of neutral H (HI)

Now we can use these equations in the previous relations...

- $N_{PI} = a n_{HI} J$ • $N_{R} = n_{e}^{2} \alpha_{R}(T_{e})$
- $n_{\rm e} = n_{\rm p} = X n$
- $n_{\rm HI} = n X n$

In equilibrium, $N_{PI} = N_R$, so: $a (n - X n) J = (X n)^2 \alpha_R$

We can now calculate X (the ionisation fraction) for a specific value of J and n at some distance from a star, r

$$J = S_* / (4 \pi r^2) \qquad [m^{-2} s^{-1}]$$

 S_* = no. of ionising photons emitted by the star per sec

For a typical O-star (e.g. the O6V star in the Trapezium) $S_* = 10^{49} \text{ s}^{-1}$

Typical nebula, $n = 10^8 \text{ m}^{-3}$; $T_e = 10^4 \text{ K}$

At r = 1 pc, $J = 8.4 \times 10^{14}$ m² s⁻¹

giving X = 0.9999999i.e. the HII region is almost fully ionised!

FIGURE 2.4 Ionization structure of two homogeneous $H + He \mod H$ II regions.

- 1. no. of ionising photons
 - Hotter star
 - More hot stars
- 2. amount of gas (gas density)

IC 1274

Thermal balance in ionized nebulae

Photoionization adds kinetic energy (KE) into the H cloud since it creates hot, fast photoelectrons.

T can increase indefinitely though... Energy must be lost somehow

Energy can be lost through photons: H recombination means KE of $e^- \rightarrow$ photon which can escape

On average, heat lost per recombination = $3/2 k T_e$ so Cooling rate is:

 $L = (3/2 \ k \ T_e) N_R$ [J m⁻³ s⁻¹]

Energy input, or the Heating rate

 $G = N_{PI} Q$ [J m⁻³ s⁻¹]

Q = the heating energy injected into the gas per photoionization (in Joules)

in equilibrium, G = L (and $N_R = N_{Pl}$) \rightarrow $T_e = (2/3)Q/k$.

However, Q per ionization is: (3/2) $kT_* \rightarrow T_e = T_*$ For OB-type ionizing stars $T_* = 30\ 000 - 60\ 000$ K These temperatures are much higher than observations Typical nebula gas temperature has $T_e \sim 10\ 000$ K.

→ There must be other ways to cool the gas

What if we relax our assumption of a pure H nebula?

Metals

- Real nebulae contain more than just H
- Metals (heavy elements, C, N, O, Ne, S, Ar, Cl, etc.) are found in proportion to Hydrogen of $\sim 10^{-4} 10^{-8}$

H recombination = ALLOWED transitions

high probability of occurring (~10⁹ per sec)

excitation/de-excitation of bound electrons

energy levels (→ transitions) in metals are not as simple as H!

$$n = 3$$

$$n = 2$$

$$n = 1$$

n = 1

Collisionally excited lines (CELs)

Forbidden lines

Forbidden line: arises when an electron is excited by a collision into a 'metastable state'.

When densities are higher (e.g. our atmos. – greater than about 10^8 per cm³), electron would almost immediately be knocked out of metastable state by collision and not be given time to emit a photon (collisional de-excitation = no photon).

But in a low density nebula, the time between collisions ~ 10 - 10,000 seconds

- (v. long time)
- → allowed time to radiate spontaneously

In a nebular environment, practically every ion goes to the ground state by forbidden radiation

The term 'Forbidden' refers to quantum mechanical rules - a little misleading!

More intuative name: <u>Collisionally excited lines</u> (CELs) - line emission following collision with electron

CELs (forbidden lines) are written with [] e.g. [OII] 3726Å

critical density for collisional de-excitation = 7×10^5 cm⁻³

 10^5 cm⁻³ = density where collisional deexcitation of many of the bright lines begins to matter

Forbidden line cooling

transition rates very low: $\sim 10^{-3} - 100$ per sec (compared to H recombination rates: 10^9 per sec)

Therefore photons are v. likely to escape nebula before being absorbed

 \rightarrow can ignore absorption

They can remove a lot of heat from the nebula, thus solving our problem

Common forbidden lines: <u>Optical</u>: [OIII] 4959,5007 Å, [NII] 6548,6584 Å, [SII] 6717,6731 Å <u>Infrared</u>: [OIII] 52,88 μm, [NIII] 57 μm

Consequence of forbidden-line cooling:

the higher the metallicity (i.e. heavy-element content) of a nebula, the faster it cools to thermal equilibrium

and the stronger the forbidden lines are

www.jodcast.net

Topical podcast with two monthly episodes, featuring interviews, news items, night sky, "Ask an astronomer", humour (and occasionally videos)

Temperatures

Observation \rightarrow T_e of ~7000–10000 K for HII regions ~9000–15000 K for PNe

Densities

Observations $\rightarrow n_e \sim 100 \text{ cm}^{-3}$ for HII regions \sim a few 1000 cm⁻³ for PNe

Intensity ratio

Electron density (cm⁻³)

Abundances

Now we know $T_{\rm e}$ and $n_{\rm e}$

we can calculate the <u>abundance</u> of all the different ions emitting the forbidden lines

For example in the case of oxygen ions (but also for ions of C, N, Ne, S, Ar, Cl etc): $\frac{N(O^{2^+})}{N(H^+)} \sim \frac{n_e}{f(T_e)} \frac{I(/4959)}{I(Hb)}$

 n_e = electron density $f(T_e)$ = fraction of O²⁺ ions able to emit at 4959 Å (strong dependence on nebular temp) $I(\lambda 4959)/I(H\beta)$ = flux of the [OIII] 4959 Å line relative to H β

→ Gives the number of O⁺⁺ ions *relative to* the number of H⁺ (the most abundant ion in a nebula).

Measure forbidden lines from <u>all</u> ionic stages of an element (e.g. O, O⁺, O^{2+})

add up all the abundances to find the <u>total abundance</u> relative to hydrogen.

Problem:

We need to know abundance of <u>all</u> ions of particular element to really know its abundance - not always possible

some lines are weak→ need to use big telescope

For more distant objects (e.g. galaxies), this becomes even more of a problem!

some lines are unobservable

→ ionization corrections (theoretical)

End of last lecture

Last lecture(s):

Recap on essentials from last lecture Looked in detail at: HII regions

- Photoionization and recombination
- Heating and cooling processes
 - H heating problem → Metals → Forbidden lines
 - Temp and density diagnostics, abundances

HII regions: Practical methods & examples

Cooler phases of ISM - non-ionised material

Temperatures

Observation \rightarrow T_e of ~7000–10000 K for HII regions ~9000–15000 K for PNe

Densities

Observations $\rightarrow n_e \sim 100 \text{ cm}^{-3}$ for HII regions \sim a few 1000 cm⁻³ for PNe

Now we know $T_{\rm e}$ and $n_{\rm e}$

we can calculate the <u>abundance</u> of all the different ions emitting the forbidden lines

add up all the abundances to find the <u>total abundance</u> relative to Hydrogen.

Problem:

We need to know abundance of <u>all</u> ions of particular element to really know its abundance - not always possible

some lines are weak→ need to use big telescope

For more distant objects (e.g. galaxies), this becomes even more of a problem!

some lines are unobservable

→ ionization corrections (theoretical)

Practical methods and examples

30 Dor (HST ACS)

- Observe with spectrograph
- Measure line strengths ("fluxes") of forbidden lines and representative H recomb. line (e.g. H $\alpha)$
- Use ratios to calculate temp and density
- Calculate abundances relative to H

 $n_{\rm e}$

arcsec

- End of stellar existence for low- to medium- mass stars
- Important source of heavy metals which enrich ISM
- Often only source of information about abundances in external systems
- Therefore, useful to know what's in them

So how do we find out what's in them?

- Spectroscopic analysis
- Historically relied on brightest emission lines collisionally excited lines
- These are easily observable, but very very sensitive to physical conditions
- Small error in assumed temperature = big error in derived abundance

Optical Recombination Lines

- ORLs of hydrogen and helium are strong, but those of heavy elements are much weaker
- Much less sensitive to physical conditions, so should be more reliable to derive abundances from
- Should be...

...but is it?

- Unfortunate problem in PNe they always give higher abundances relative to hydrogen than CELs
- Factors range from 3 30 and beyond

Possible solutions?

- Possibility 1: Temperature fluctuations in homogeneous gas
 - Hotter regions preferentially emit CELs, cooler regions preferentially emit ORLs. Assuming uniform temperature results in underestimated CEL abundances.

Easily ruled out with high-res spectroscopy

- Possibility 2: density fluctuations in chemically homogeneous gas
 - Very dense regions (n_e~10⁶ cm⁻³) would quench emission of [O III] 4959,5007 lines
 - [O III]4363 has higher critical density and is not quenched. Therefore [O III] ratio underestimated, T_e overestimated, CEL abundances underestimated.

Measuring density of hydrogen gas (through method we haven't seen) rules this out

- Possibility 3: Chemical inhomogeneities
 - Strongly metal-rich zone near central stars could give rise to observed spectra – ruled out by spatially-resolved analysis
 - 2. Small metal-rich knots (too small to be directly resolved), cooled strongly by high metal content

PN: Abell 30

Knots: Abell 30

- Results of empirical analysis: T([O III]) ~16000 K
 T(He I) ~5000–10000 K
 T(O II) <2000 K
- Abundances: ORL abundances exceed CEL abundances by factors of 300-700!!

HST imaging

Conclusions

- Cold H-deficient knots are confirmed as existing in planetary nebulae
- Simple temperature fluctuations are ruled out from spatially resolved spectroscopy
- Evidence strongly suggests existence of cold metalrich knots in most planetary nebulae.

Open questions

- No direct observations in vast majority of cases. Where did the knots come from? Why are they there?
- What is their distribution?
- What is overall chemical content of PNe?