
2. A major weakness of Λ iteration is that it is a local method; that is, it takes no account of the

effect that the correction δT (τ) at depth τ has on the mean intensity Jν(τ
′) in some adjacent layer

at depth τ′. A better method would be sensitive to the global status of the atmosphere; that is, we

would prefer to use a correction in an integral form.

3. Furthermore, because radiative equilibrium is enforced locally (rather than globally), the method

can lead to dF/dτ = 0, as required, but not at the desired value for the flux F0. More generally,

the method can stabilize at an incorrect solution – a very bad numerical property.

As a result of these limitations, Λ iteration is not used as a practical solution method – although often

wheeled out as a simple demonstration of how to solve an atmospheric structure in principle, it is also a

good example of how not to do it in practice. However, towards the end of the 20th century, it was

realised that its convergence properties could be dramatically improved through the introduction of

modified, ‘accelerated’ or ‘approximate’, lambda operators. These so-called ALI methods are now a

mainstay of modern stellar-atmosphere computer programs.

Nevertheless, other techniques remain in use, and are (arguably) easier to demonstrate, including (e.g.)

Avrett-Krook and Unsöld–Lucy iteration; we’ll review the latter as a practical alternative to simple Λ

iteration.

9.3 Unsöld–Lucy iteration

The Unsöld–Lucy method incorporates constraints on both the absolute value of the flux and its (lack

of) depth dependence. With minor modifications, this method is embodied in the ‘state of the art’

modelling code PHOENIX.

Although we want to relax the grey-atmosphere approximation, it’s still convenient to avoid the full

frequency dependence of opacities by defining several frequency-integrated, flux-weighted forms

(where all quantities with subscripts are to be understood to be functions of [optical] depth in the

atmosphere). This is tolerable because at this stage we’re not really concerned with the

frequency-dependent spectrum, but just the overall radiative energy transport. We define the following:

Planck mean opacity: kP =

∫ ∞

0
ka
νBν dν

∫ ∞

0
Bν dν

, ≡

∫ ∞

0
ka
νBν dν

B
;

Eddington-flux mean opacity: kH =

∫ ∞

0
kνHν dν

∫ ∞

0
Hν dν

, ≡

∫ ∞

0
kνHν dν

H
;

intensity mean opacity: kJ =

∫ ∞

0
ka
νJν dν

∫ ∞

0
Jν dν

, ≡

∫ ∞

0
ka
νJν dν

J
,

with corresponding (frequency-independent) optical-depth increments dτP, dτH, and dτJ (= −kP dr,

−kH dr, and −kJ dr), where kν = ka
+ ks
ν is the sum of ‘true’ and scattering opacities (cf. eqtn. 7.11).
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9.3.1 Zeroth moment

Starting from the zeroth moment of the transfer equation (integrating the transfer equation over solid

angle, as in our discussion of Milne’s first equation; Section 8.2.1) we previously obtained the flux

derivative in the form

dHν(τν)

dr
= kνS ν(τν) − kνJν(τν), (8.4)

(recalling that the Eddington flux is Hν = Fν/4π). Using eqtn. (7.11) for S ν and integrating over

frequency, then at some (frequency-independent) depth τP in the atmosphere

∫ ∞

0

dHν(τP)

dr
dν =

∫ ∞

0

ka
νBν (T (τP)) dν −

∫ ∞

0

ka
νJν(τP) dν.

Using the intensity- and Planck-mean volume opacities on the right-hand side this becomes

dH(τP)

dr
= kPB (T (τP)) − kJJ(τP).

Dividing both sides by kP and rearranging we obtain

B (T (τP)) =
kJ

kP

J(τP) −
dH(τP)

dτP
. (9.3)

In principle, eqtn. (9.3) allows us to compute the frequency-integrated Planck source function at depth

τP; or, essentially equivalently, the temperature structure temperature T (τP). It has the desireable

property that all the terms are frequency-averaged or frequency-integrated (so we don’t have to

explicitly evaluate them frequency by frequency).

However, to use eqtn. (9.3) in practice, knowing that we want a radiative-equilibrium temperature

structure in which the radiative flux H is constant with depth,6 we see that we require a useful

expression for J(τP). To achieve that, we look to the first moment.

9.3.2 First moment

From the first moment of the transfer equation we saw that

dKν(τν)

dτν
=

Fν(τν)

4π
≡ Hν(τν); (8.7)

but in the Eddington (two-stream) approximation Kν = Jν/3 (eqtn. 8.16), and so

dJν(τν)

dτν
= 3Hν(τν).

6Hence the dH(τP)/dτP term goes to zero when we achieve a solution with a correct, radiative-equilibrium, temperature

structure. However, we can’t ignore the term at this stage, because it will be non-zero for any incorrect ’first guess’ temperature

structure.
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Using dτν = −kνdr, and integrating over frequency, then at some Planck-mean optical depth τP
∫ ∞

0

dJν(τP)

dr
dν = −3

∫ ∞

0

kνHν(τP) dν,

or, using the flux-mean opacity on the right-hand side

dJ(τP)

dr
= −3kHH(τP). (9.4)

Dividing both sides of eqtn. (9.4) by −kP and integrating over optical depth leads to

J(τP) =

∫ τP

0

3
kH

kP

H(t) dt + J(0)

where J(0) is a constant of integration corresponding to the mean intensity at the surface. Recalling that

J(0) = F(0)/2π,= 2H(0) (8.17)

in the Eddington two-stream approximation, we obtain

J(τP) =

∫ τP

0

3
kH

kP

H(t) dt + 2H(0). (9.5)

This is our required expression for J(τP), the mean intensity at some depth τP in the atmosphere.

9.3.3 The correction

Combining eqtns. (9.3) and (9.5) gives, in effect, the temperature as a function of Planck mean optical

depth, in terms of the Eddington flux – which, for given Teff , we know.

B (T (τP)) =
kJ

kP

[∫ τP

0

3
kH

kP

H(t) dt + 2H(0)

]

−
dH(τP)

dτP
, = σT 4(τP)/π. (9.6)

As in our outline of Λ iteration, some initial trial solution for the temperature structure T1(τP) will, in

general, predict an initial set of fluxes H1(τP) that vary with depth; while in radiative equilibrium the

correct solution should give constant flux H for all τP.

We therefore need to evaluate the correction required to the temperature – or, equivalently, the

correction to frequency-integrated Planck function, B (T (τP)) in eqtn. (9.6), which we can translate

directly into a temperature correction. We write the correction as

∆B (T (τP)) = B (T2(τP)) − B (T1(τP))

where our first-guess solution is B (T1(τP)) and the updated estimate, after adding this correction, is

B (T2(τP)).

Writing eqtn. (9.6) for B(T1) and for B(T2) and subtracting gives

∆B (T (τP)) =
kJ

kP

[

3

∫ τP

0

kH

kP

∆H(t) dt + 2∆H(0)

]

−
d(∆H(τP))

dτP
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where the ‘∆H’ terms are corrections H2 − H1, and we have assumed that the ratios kJ/kP, kH/kP are the

same for the new estimate as for the first one.7

We know what the target value8 is for the Eddington flux – it’s just σT 4
eff
/(4π), which is therefore

always our guess at H2. Similarly, the target gradient, d(H2(τP))/dτP is zero, so

d(∆H(τP))

dτP
=

(

d(H2(τP))

dτP

)

−
d(H1(τP))

dτP

= B (T1(τP)) −
kJ

kP

J1(τP). (9.3)

Our required temperature correction is therefore

∆B (T (τP)) =
kJ

kP

[

3

∫ τP

0

kH

kP

∆H(t) dt + 2∆H(0)

]

− B (T1(τP)) +
kJ

kP

J1(τP) (9.7)

Eqtn. (9.7) allows us to compute the desired correction to the Planck function (or temperature

structure), which can then be applied iteratively as follows:

0. Obtain a first estimate of the temperature structure T (τ) (e.g., from a grey-atmosphere solution);

1. From T (τ), compute Bν (T (τ)), and thence kP (ab initio, or, more realistically, from a

precomputed set of opacities kν(ρ,T )).

2. With the source function in hand, compute the mean intensities J(τP) from the formal solution

(eqtn. 7.23; cf. item 4 in §9.1.1, above), and thence kJ.

3. Similarly, H1(τP) (hence kH) and H1(0) can be computed (eqtns. 7.24, 7.25). We know the true

frequency-integrated flux – it is H = F/4π = σT 4
eff
/4π (at all depths, in radiative equilibrium) –

so we can write the required corrections to the current estimates, H1(τP), as

∆H(τP) = H − H1(τP).

at each depth τP (including τP = 0).

4. Substituting into eqtn. (9.7) gives depth-dependent corrections to B (T1(τP)), hence updated

values, B (T2(τP)) – which translates into an updated temperature structure, T2(τP). Return to

step 1 until convergence is achieved.

7The opacities are updated after we have a new estimate of temperature structure, so we’re always using values from the

previous iteration. Nevertheless, we can safely assume that this will provide a pretty good estimate of the opacity ratios, which

we can expect to be less sensitive to temperature than are the separate values.
8The iterative process won’t converge on it immediately, because we don’t have self-consistent opacities, so it remains a

‘target’ through the process.
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Points to note:

• At depth, J → B (and kJ → kP). Hence the d(∆H)/dτP term, eqtn. (9.3), tends to zero – just as for

Λ iteration.

• However, the first [bracketed] term in eqtn. (9.7) gives rapid convergence at large optical depth,

because the target H is known exactly.

Because eqtn. (9.7) uses an exact calculation of the the flux error to determine the correction,

convergence is rapid (although it isn’t achieved in a single iteration because the calculation is exact for

only approximate estimates of physical parameters). This also ensures that the solution converges to the

correction solution (i.e., correct F0).

90


