




Figure 1: An echellogram of the solar spectrum.
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Preface
What follows are my notes for PHAS0036, ‘The Physics of Stars’.

Necessary pre-knowledge for this course is provided by the second-year course ‘Astrophysical
Processes’ (now PHAS0018), which I used to teach, and for which I developed substantial notes,
including considerable additional material for my own interest. The PHAS0036 syllabus includes some
of that additional material, which is incorporated into these notes. I’ve also freely included chunks of
basic PHAS0018 material in the text where I felt it was useful for reference/revision purposes (notably
Chapters 2–3 and 6), or to establish a consistent nomenclature (which may differ slightly from that
currently adopted in PHAS0018). I’ve attempted to identify this material explicitly in section headings;
it will not be covered in any depth in lectures (it’s stuff you’re supposed to know already), nor will it
come up in the PHAS0036 exam (other than implicitly, as part of the broader context).

The two main themes of PHAS0036 (stellar atmospheres; structure & evolution) were formerly
delivered as separate courses, and were originally delivered in PHAS0036 by separate lecturers.
Rationalization of all this material into a coherent whole is now substantially complete; there may still
be some duplication in the written notes, but I have tried to ensure that at least the nomenclature is
homogeneous.

Nevertheless, do bear in mind that these are notes, written primarily for my own use. Boxed items, and
indented or small-font sections, are ‘extras’, and not part of the syllabus (and therefore not examinable).
You will find sections of incomplete text flagged up; some repetition; a numbering system that may
depart from that given in lectures (as the written notes are under continual revision); and, probably,
outright errors. If you think you’ve found any mistakes, or encounter anything that appears unclear
(impenetrable, nonsensical. . .), please let me know.
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Section 1

Setting the scene

1.1 Introduction

The foundations of stellar astrophysics are believed to be firm, allowing current research into
more-detailed aspects – such as the roles of magnetic fields, rotation, or winds – to be conducted with
confidence. The work of laying these foundations can be largely traced to a golden age for fundamental
physics in the first part of the 20th century, in parallel with the development of quantum mechanics,
nuclear physics, and relativity (although it is remarkable how far knowledge could be advanced even
before Eddington’s identification of nuclear fusion as the power source for stars).

With this background, the broad purposes of this course are twofold:

• first, we want to be able to understand the principles of how to model stellar spectra (such as that
in Fig. 1.1) in order to infer photospheric properties;

• secondly, we aim to understand these stellar properties in the context of our theory of stellar
structure and evolution. In effect, this means assembling a set of tools that allow us to interpret
the distribution of stars in the Hertzsprung-Russell diagram (Fig. 1.2).

The content is therefore divided into two parts, delivered before and after Reading Week:

• we will first study how we can model stellar atmospheres and stellar spectra.

• then we will study the equations for the structure of the star’s interior and its evolution.
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Figure 1.1: A short section of the solar flux spectrum around the strong Hα line (adapted from Wallace et al.
2011).

Figure 1.2: The Hertzsprung-Russell diagram for stars within 100 pc of the Sun (distances from Hipparcos).
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1.1.1 Stellar Atmospheres

In the broadest terms, a stellar atmosphere can be considered as the transition region from the stellar
interior to the interstellar medium. The behaviour of the atmosphere is controlled by the density of the
gases in it and the energy escaping through it.1 These quantities depend proximately on the
temperature,2 the pressure, and the atmospheric abundances (and potentially other factors, such as mass
loss, or magnetic fields), which in turn are ultimately determined by the mass and age of the star (and
potentially other factors, such as chemical composition and rotation rate at birth).

A model atmosphere is a numerical simulation of a real stellar atmosphere, typically presented as the
run of physical parameters (such as temperature) as a function of depth; here ‘depth’ generally refers to
optical depth (§4.4), measured inwards.

Observationally, the most easily accessible part of the atmosphere is the photosphere, because, by
definition, the visible spectrum originates there. (We will generally use ‘atmosphere’ and ‘photosphere’
more or less interchangeably.) The photosphere is strongly affected by its characteristic temperature.
Typically, the temperature drops by a factor ∼ 2 from the bottom to the top of the photosphere, so the
local temperature is not of itself a useful parameter to characterize the star. Instead, we can define (and
measure) the effective temperature, Teff , in terms of the total radiative energy leaving the star:∫ ∞

0
Fν dν ≡ σT 4

eff

(∫ ∞

0
Fλ dλ

)
(1.1)

where Fν is the flux3 emitted by the star, per unit area, at frequency ν. The luminosity is then given by4

L = 4πR2σT 4
eff

. It is easy to recognize that Teff corresponds to the temperature T of a black body5

having the same power output as the star.

In the Sun, the photosphere is around 500 km thick6 – that is, about half the distance from Land’s End
to John O’Groats, and less than about ∼0.1% of the solar radius (R� ' 695,800 km). Because of this,
the atmosphere is well approximated as a plane-parallel medium. For other stars, the thickness scales
with the surface gravity (∼ M/R2) and effective temperature, and with the opacity (Section 4.3), as
consequences of hydrostatic equilibrium (Section 2.1). Hydrostatic equilibrium also links surface
gravity to pressure; and it is customary in stellar astrophysics to use surface gravity (which varies very
little through a ‘thin’ stellar atmosphere), rather than pressure (which varies more more), to characterise

1If we were to attempt to identify a single paper as the starting point for modern research into radiative transfer in
stellar atmospheres, it would probably be Sir Arthur Schuster’s quaintly titled “Radiation Through a Foggy Atmosphere”
(1905ApJ....21....1S).

2What is ‘the’ temperature (Appendix N)? Usually, the gas kinetic temperature is implied.
3A formal definition of flux is given in §3.2
4This simple formulation is true only for spherical stars. This is usually an excellent approximation, but can break down

for very rapidly rotating stars, or stars in close binary systems, where Teff is no longer a global constant, but can vary from point
to point. An explicit integration over surface area is then required.

5Appendix C discusses black-body radiation.
6As determined from an analysis of limb darkening; cf. Section 8.4
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the conditions giving rise to the observed spectrum. In principle, therefore, by studying the photosphere
we can infer information on the gravity (a simple function of stellar mass and radius) and on the opacity
(having a more complex dependence on temperature and abundances), as well as the effective
temperature.

1.1.2 Stellar structure and evolution

The information we can infer from the spectrum is, literally, superficial: it tells us something about the
surface conditions of the star. To connect these to global stellar parameters, such as mass, radius,
luminosity, we need to know something about how these fundamental parameters relate to the
photospheric conditions. This is what underpins the investigation of stellar structure; but the structure
(and hence the photospheric properties) changes with time, as the nuclear fuel powering the star is
consumed. Hence the studies of stellar structure and of stellar evolution are inextricably linked.

1.1.3 Linking to observations

Although the fundamental physical properties are parameters such as M, R, and L, these translate into
observational parameters such as absolute magnitude and colour index (cf. Appendix E), or spectral
type. The ultimate goal is to relate these observationally accessible quantities to the physical
parameters, and thence to make inferences about stellar structure and evolution.

The spectrum is a particularly powerful tool in this endeavour, because, as already noted, the continuum
and line spectra depend principally on the gravity, temperature, and composition (as well as rotation,
magnetic field, mass loss, maculation, and other properties). The line spectra are used to classify stars,
according to their temperature and photospheric pressure. With this criterion, we can assign a spectral
type to a star. Originally, such classifications used photographic records (spectrograms) that centred in
the blue region of the spectrum. Spectra toward the cool end of the sequence are called ‘late-type’
spectra, and those toward the hot end ‘early-type’ (for historical reasons; they bear no relationship to
actual ages or evolutionary stages). There are ∼60 categories of stars, from O2 to M8. From the hottest
to coolest, the standard temperature sequence is: OBAFGKM. (Additionally, types C [and R, N] and S
are used for spectroscopically distinct objects at M-star temperatures; types L, T, and Y are used for
brown dwarfs.)

In the short introductory sections 1–4, we’ll briefly recap some basic material (which should be familiar
from PHAS 0018) in order to ensure we’re fully equipped for subsequent topics. Section 5 then
examines opacity sources in some detail, introducing the concept of the Rosseland Mean Opacity; while
Section 6 reviews LTE. Section 7 introduces some basic concepts in radiative transfer.

We then look at ‘real world’ model atmospheres.
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Section 2

Structure equations [review of PHAS0018 material]

For reference, we recall some basic equations of stellar (and atmospheric) structure:

2.1 Hydrostatic (pressure) equilibrium

Consider a volume element of density ρ, thickness dr, area dA. The gravitational force on the element
(its weight) is the gravity times the mass:

g × ρ dA dr.

In hydrostatic equilibrium (HSE), the downward force of gravity is balanced by the upwards pressure:1

dP dA = −gρ dA dr; i.e.,
dP
dr

= −ρ g (2.1)

(the minus sign indicating that the two forces act in opposite directions). In spherical symmetry (e.g.,
for a star) the local gravity is Gm(r)/r2, where m(r) is the total mass contained within radius r

1Recall, pressure is force per unit area, so the force is pressure times area

r + dr

d A

P+dP

r

gdm

P
ρ

Figure 2.1: Hydrostatic equilibrium.
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(measured from the centre), so in this case HSE can be expressed in the form
dP(r)

dr
= −ρ(r)

Gm(r)
r2 (2.2)

which is useful in discussing stellar atmospheres.

We can also express eqtn. (2.1) in terms of optical depth (anticipating eqtn. 4.6)2:
dP(τ)
dτν

=
g
κν

(2.3)

2.1.1 Equations of state

The principal sources of pressure throughout a ‘normal’ (non-degenerate) star are gas pressure, and
radiation pressure.3 We will take the corresponding equations of state to be, in general,

PG = nkT ;

= (ρkT )/(µm(H)) (2.4)

PR =
1
3

aT 4 (3.21)

for number density n at temperature T , density ρ. Here µ is the mean molecular weight (§ 2.4), k is
Boltzmann’s constant, and m(H) is the hydrogen mass; a is the radiation constant, a = 4σ/c, with σ the
Stefan-Boltzmann constant.

2.2 Mass Continuity

The quantities m(r) and ρ(r) appearing in eqtn. (2.1) are not independent, but are related through the
equation of mass continuity. For static configurations, the mass in a thin spherical shell of thickness dr
at radius r is

dm(r) = 4πr2ρ(r) dr;

that is,
dm(r)

dr
= 4πr2ρ(r). (2.5)

In a dynamic medium, the mass passing through some unit area per unit time is just the mass density
times the component of the velocity normal to the area. In particular, for a spherically symmetric flow,
such as may apply in a stellar wind associated with mass-loss rate Ṁ, we have

Ṁ = 4πr2ρ(r)3(r) (2.6)

where ρ(r), 3(r) are the density and (radial) flow velocity at radius r.
2dτν = ±kν ds = ±κνρ ds
3Electron degeneracy pressure is important in white dwarfs, and neutron degeneracy pressure in neutron stars. Magnetic

pressure, B4/(4π), and turbulent pressure, ρv2/2, can also be significant under some circumstances.
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2.3 Energy continuity

Our final equation of continuity is energy continuity; by inspection,

dL
dr

= 4πr2 ρ(r)ε(r) (2.7)

where

• r is radial distance measured from the centre of the star

• P(r) is the total pressure at radius r

• ρ(r) is the density at radius r

• g(r) is the gravitational acceleration at radius r

• m(r) is the mass contained with radius r

• L(r) is the total energy transported through a spherical surface at radius r

• ε(r) is the energy generation rate per unit mass at radius r

The stellar radius is R, the stellar mass is M ≡ m(R), and the emergent luminosity L ≡ L(R) (dominated
by radiation at the stellar surface).

2.4 Mean Molecular Weight

The ‘mean molecular weight’, µ, is4 simply the average mass per particle in a gas, expressed in units of
the hydrogen mass, m(H). That is, the mean particle mass is µm(H); since the number density of
particles n is just the mass density ρ divided by the mean mass we have

n =
ρ

µm(H)
and P = nkT =

ρ

µm(H)
kT. (2.8)

[For eqtn. 2.8 to be dimensionally correct, µ is necessarily dimensionless, consistent with the definition
just given. Numerically, however, µ is equivalent to the molar mass expressed in g/mol.]

The mean molecular weight is trivially calculated if the fractional abundances by number are available
for different nuclei and free electrons. In astrophysics, however, abundances are more often listed by

4Why ‘molecular’ weight for a potentially molecule-free gas or plasma? I don’t know, though I suspect it may be because
this nomenclature originated in other contexts (such as hydrostatic equilibrium in the Earth’s atmosphere).
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mass. For example, a medium having typical ‘cosmic’ or ‘solar’ abundances will have ∼921 H nuclei,
78 He nuclei, and 1 heavier nucleus for every 1000 nuclei; but because the hydrogen nuclei weigh least,
the respective mass fractions5 are X ' 0.74 (∼ 921/(1 × 921 + 4 × 78+ ∼ 16 × 1), Y ' 0.25, Z ' 0.01.
In general, for an un-ionized gas

µ =

X +
Y
4

+
∑

i

( fi/Ai)

−1

where fi, Ai are the mass fraction and atomic weight6 of element i, which has atomic number zi.7

For an ionized gas the total number density is the sum of the number densities of nuclei and free (i.e.,
unbound) electrons. For a fully ionized gas of mass density ρ these number densities are:

Element: H He Metals

No. of nuclei Xρ
m(H)

Yρ
4m(H)

Zρ
Am(H)

No. of electrons Xρ
m(H)

2Yρ
4m(H)

(A/2)Zρ
Am(H)

where A is the average atomic weight of metals (∼16 for solar abundances), and for the final entry we
make the approximation that Ai ' 2zi. In this case

n '
ρ

m(H)
(2X + 3Y/4 + Z/2) ≡

ρ

µm(H)
(2.9)

(where we have set Z/2 + Z/A ' Z/2, since A � 2), and

µ ' (2X + 3Y/4 + Z/2)−1 (2.10)

= 2 (1 + 3X + Y/2)−1

(making use of the fact that X + Y + Z ≡ 1).

We can drop the approximations to obtain a more general (but less commonly used) definition,

µ−1 =
∑

i

zi + 1
Ai

fi

(where, of course, the summation now includes hydrogen and helium).

5The mass fractions of hydrogen, helium, and metals are conventionally labelled X, Y , and Z (cf. Appendix H), where, in
astrophysics, ‘metals’ should be read to mean ‘all elements heavier than helium’.

6Averaged over isotopes if necessary.
7Of course, we could include hydrogen and helium implicitly in this definition, but it’s normal practice to identify them

separately.
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By way of illustration:
for a neutral, pure-hydrogen gas (X = 1, Y = Z = 0), µ = 1;
for a fully ionized pure-hydrogen gas8 (X = 1, Y = Z = 0), µ = 1/2;
for a neutral, pure-helium gas (Y = 1, X = Z = 0), µ = 4;
for a fully ionized pure-helium gas (Y = 1, X = Z = 0), µ = 4/3 (mass 4 distributed between three
particles: a nucleus and two free electrons).

These simple examples serve to demonstrate that the mean molecular weight depends on both the
chemistry (abundances) and the state of ionization. For a neutral gas of solar abundances (X = 0.7381,
Y = 0.2485, Z = 0.0134), µ ' 1.25; if all elements are singly ionized, there are twice as many particles
per unit mass, and µ ' 1.25/2 = 0.61, while a fully fully ionized solar-abundance plasma has µ ' 0.60.
(Because of its abundance, it is primarily the ionization state of hydrogen that matters.)

It’s sometimes convenient to make use of the mean molecular weight per free electron, µe = ρ/(nem(H),
or the mean molecular weight per ion, µi = ρ/nim(H). If we allow the term ‘ions’ to include neutral
atoms, then the total number density is n = ne + ni, and 1/µ = 1/µe + 1/µi; and for a perfect-gas
equation of state we can write (e.g.) the electron pressure as

Pe =
ρ

µem(H)
kT.

8The astute reader may notice an ‘issue’ here; the mean molecular weight of a gas of pure atomic hydrogen is, by our
definition, exactly 1. However, the mean molecular weight of a fully ionized hydrogen gas is not exactly 0.5, because of
binding energy – the sum of the masses of a free proton and a free electron is marginally greater than the mass of a hydrogen
atom, so the mean molecular weight of an ionized hydrogen gas is actually a shade greater than 0.5. Such niceties are rarely of
any consequence in general astrophysical studies.
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Section 3

Radiation [review of 0018 material]

Almost all the astrophysical information we can derive about distant sources results from the radiation
that reaches us from them. Our starting point is, therefore, a review of the principal ways of describing
radiation. (In principle, this could include polarization properties, but we neglect that for simplicity).

The fundamental definitions of interest are of (specific) intensity and (physical) flux.

3.1 Specific Intensity, Iν

The specific intensity (or radiation intensity, or surface brightness, or monochromatic radiance) is
defined as:

the rate of energy flowing at a given point,
per unit area,
per unit time,
per unit frequency interval,
per unit solid angle Ω (in azimuth φ and at direction θ to the normal; refer to the geometry
sketched in Fig. 3.1)

or, expressed algebraically,

Iν(θ, φ) =
dEν

dS dt dν dΩ

=
dEν

dA cos θ dt dν dΩ
[J m−2 s−1 Hz−1 sr−1]. (3.1)

We’ve given a ‘per unit frequency definition’, but we can always switch to ‘per unit wavelength’ by
noting that, for some frequency-dependent physical quantity ‘Xν’, we can write

Xν dν = Xλ dλ

11



dA

dr

dS

ds

φ

θ

Figure 3.1: Geometry used to define radiation quantities. The element of area dA might, for example, be
on the ‘surface’ of a star (whatever that means).

or

Xλ = Xν
∣∣∣∣∣ dν

dλ

∣∣∣∣∣
(which has the same dimensionality on each side of the equation). Mathematically, dν/ dλ = −c/λ2, but
physically the minus sign just reflects the fact that increasing frequency means decreasing wavelength
(clearly, we require a positive physical quantity on either side of the equation). For example, specific
intensity per unit wavelength is related to Iν by

Iλ = Iν
∣∣∣∣∣dνdλ

∣∣∣∣∣ = Iν
c
λ2 [J m−2 s−1 m−1 sr−1]

where the θ, φ dependences are implicit (as will generally be the case in these notes). Equation (3.1)
defines the monochromatic specific intensity (‘monochromatic’ will usually also be implicit); we can
define a total intensity by integrating over frequency:

I =

∞∫
0

Iν dν [J m−2 s−1 sr−1].

3.1.1 Mean Intensity, Jν

The mean intensity is, as the name suggests, the average of Iν over solid angle Ω; it is of use when
evaluating the rates of physical processes that are photon dominated but independent of the angular

12



distribution of the radiation (e.g., photoionization and photoexcitation rates). We define it as

Jν =

∫
4π Iν dΩ∫

4π dΩ
=

1
4π

∫
4π

Iν dΩ

or, since

∫
4π

dΩ =

2π∫
0

π∫
0

sin θ dθ dφ,

Jν =
1

4π

2π∫
0

π∫
0

Iν sin θ dθ dφ [J m−2 s−1 Hz−1 sr−1] (3.2)

Introducing the standard astronomical nomenclature1 µ = cos θ (whence dµ = − sin θ dθ), we have

∫
4π

dΩ =

−
2π∫

0

−1∫
+1

dµ dφ =


2π∫

0

+1∫
−1

dµ dφ (3.3)

and eqtn. (3.2) becomes

Jν =
1

4π

2π∫
0

+1∫
−1

Iν(µ, φ) dµ dφ (3.4)

(where for clarity we show the µ, φ dependences of Iν explicitly).

If the radiation field is independent of φ (i.e., has azimuthal symmetry, as may be the case in a stellar
atmosphere without starspots, for example) then this simplifies to

Jν =
1
2

+1∫
−1

Iν(µ) dµ. (3.5)

(From this it is evident that if Iν is completely isotropic – i.e., no θ[≡ µ] dependence, as well as no φ
dependence – then Jν = Iν. This should be intuitively obvious; if the intensity is the same in all
directions, then the mean intensity must equal the intensity [in any direction].)

3.2 Physical Flux, Fν

The physical flux (or radiation flux density, or radiation flux, or just ‘flux’2) is the net rate of energy
flowing across unit area (e.g., at a detector), from all directions, per unit time, per unit frequency

1As we’ve seen, it’s also completely standard to use µ for mean molecular weight; fortunately, the context rarely permits
any ambiguity about which ‘µ’ is meant.

2A note for the pedantic, best ignored by others: few, if any, astronomers would have qualms about referring to Fν as ‘the
flux’. However, more properly it is a flux density; formally, a flux Fν has (SI) units of J m−2 s−1, and so Fν = νFν.
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interval:

Fν =

∫
4π dEν

dA dt dν
[J m−2 s−1 Hz−1].

The absence of explicit directionality, and the concept of energy ‘flow’, are what distinguishes flux from
intensity, but the two are clearly related. Using eqtn. (3.1) we see that

Fν =

∫
4π

Iν cos θ dΩ (3.6)

=

2π∫
0

π∫
0

Iν cos θ sin θ dθ dφ [J m−2 Hz−1] (3.7)

=

2π∫
0

+1∫
−1

Iν(µ, φ)µ dµ dφ

or, if there is no φ dependence,

Fν = 2π

+1∫
−1

Iν(µ)µ dµ. (3.8)

Because we’re simply measuring the energy flowing across an area, there’s no explicit directionality
involved – other than if the energy impinges on the area from ‘above’ or ‘below’.3 For
stellar-atmosphere considerations, it’s therefore often convenient to divide the contributions to the flux
into the ‘upward’ (emitted, or ‘outward’) radiation (F+

ν ; 0 ≤ θ ≤ π/2, Fig 3.1) and the ‘downward’
(incident, or ‘inward’) radiation (F−ν ; π/2 ≤ θ ≤ π), with the net upward flux being Fν = F+

ν − F−ν :

Fν =

2π∫
0

π/2∫
0

Iν cos θ sin θ dθ dφ +

2π∫
0

π∫
π/2

Iν cos θ sin θ dθ dφ

≡ F+
ν − F−ν

As an important example, the surface flux emitted by a star is just F+
ν (assuming there is no incident

external radiation field);

Fν = F+
ν =

2π∫
0

π/2∫
0

Iν cos θ sin θ dθ dφ

3In principle, flux is a vector quantity, but the directionality is almost always implicit in astrophysical situations; e.g., from
the centre of a star outwards, or from a source to an observer.
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or, if there is no φ dependence,

= 2π

π/2∫
0

Iν cos θ sin θ dθ.

= 2π

+1∫
0

Iν(µ)µ dµ. (3.9)

If, furthermore, Iν has no θ dependence over the range 0–π/2 then

Fν = πIν (3.10)

(since
∫ π/2

0 cos θ sin θ dθ = 1/2). In reality, Iν is never independent of θ; nevertheless, if for some reason
we make the approximation that Iν ' Bν, the Planck function, then Fν = πBν.

3.3 Flux vs. Intensity

If Iν is completely isotropic, then F+
ν = F−ν , and Fν = 0. This highlights an important point: essentially,

an intensity (particularly the mean intensity) describes how much radiation there is at some point, while
flux measures the nett flow of radiation. One can have very large intensities associated with relatively
small fluxes (cf., e.g., Box 12.2).

In the context of observations of astronomical sources, a related difference between Fν and Iν is that
while the physical flux falls off as r−2, the specific intensity is independent of distance to the source4

(but requires the source to be resolved). This can be understood simply by noting that specific intensity
is defined in terms of ‘the rate of energy flow per unit area of surface. . . per unit solid angle’. The
energy flow per unit area falls off as r−2, but the area per unit solid angle increases as r2, and so the two
cancel.

δA

δa

δ ω
δ Ω

DetectorSource

D

4In each case, true only if intervening material doesn’t attenuate the radiation.
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To express this more formally: suppose some area δA on a source at distance D subtends a solid angle
δΩ at a detector; while the detector, area δa, subtends a solid angle δω at the source. The energy emitted
towards (and received by) the detector is

E = Iν δA δω; but

δA = D2δΩ and δω = δa/D2, so
E
δΩ

= IνD2 δa
D2 ;

that is, the energy received per unit solid angle (i.e., the intensity) is distance independent. In
astronomical parlance, we say that the surface brightness of source is distance independent (in the
absence of additional processes, such as interstellar extinction).

A source must be spatially resolved for us to be able to measure the intensity; otherwise, we can
measure ‘only’ the flux – if the source is unresolved, we can’t identify different directions towards it.
Any spatially extended source will, at some large enough distance D, produce an image source at the
focal plane of a telescope that will be smaller than the detector (pixel) size. For such an unresolved
source, the detected energy is

E = Iν δa δΩ

= Iν δa
δA
D2

and we recover the expected inverse-square law for the detected flux.

3.3.1 Flux from a star

As an example, consider the flux from a spherical star at distance D.
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The observer sees the projected area of the annulus as

dA = 2πr dr

and since

r = R sin θ (and dr = R cos θ dθ)

we have

dA = 2πR sin θ R cos θ dθ

= 2πR2 sin θ cos θ dθ

= 2πR2µ dµ

where as usual µ = cos θ. The annulus therefore subtends a solid angle

dΩ =
dA
D2 = 2π

( R
D

)2
µ dµ.

The flux received from this solid angle is

d fν = Iν(µ) dΩ

so that the total observed flux is

fν = 2π
( R

D

)2
1∫

0

Iνµ dµ

or, using eqtn. (3.9),

=

( R
D

)2
Fν

= θ2
∗Fν [J m−2 s−1 Hz−1]

where θ∗ is the solid angle subtended by the star (measured in radians).

3.4 Moments of the radiation field

The moments of the radiation field are of great importance in the study of radiation transport in stellar
atmospheres (e.g., §8). We define the nth moment of the radiation field as

Mν(n) ≡

∫
4π Iν(µ, φ)µn dΩ∫

4π dΩ

=
1

4π

∫
4π

Iν(µ, φ)µn dΩ

=
1

4π

∫ 2π

0

∫ +1

−1
Iν(µ, φ)µn dµ dφ, =

1
2

+1∫
−1

Iν(µ)µn dµ for azimuthal symmetry.
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We’ve therefore already encountered the zeroth-order moment, which is the mean intensity:

Jν =
1
2

+1∫
−1

Iν(µ) dµ. (3.5)

We have previously written the flux as

Fν = 2π

+1∫
−1

Iν(µ)µ dµ; (3.8)

to cast this in the same form as eqtns. (3.5) and (3.5), we define the ‘Eddington flux’ as Hν = Fν/(4π),
i.e.,

Hν =
1
2

∫ +1

−1
Iν(µ)µ dµ. (3.11)

We see that Hν is the first-order moment of the radiation field.

The second-order moment, the so-called ‘K integral’, is, from the definition of moments,

Kν =
1
2

+1∫
−1

Iν(µ)µ2 dµ (3.12)

We will see in Section 3.7 that the K integral is straightforwardly related to the radiation pressure,
Pν(= 4πKν/c).

In the special case that Iν is isotropic we can take it out of the integration over µ, and

Kν =
1
2
µ3

3
Iν

∣∣∣∣∣∣+1

−1

=
1
3

Iν

[
also =

1
3

Jν for isotropy
]

(3.13)

Higher-order moments are not used in general. So, to recap (and using the notation first introduced by
Eddington himself), for n = 0, 1, 2:

n = 0 Mean Intensity Jν = 1
2

∫ +1
−1 Iν(µ) dµ

n = 1 Eddington flux Hν = 1
2

∫ +1
−1 Iν(µ)µ dµ

n = 2 K integral Kν = 1
2

∫ +1
−1 Iν(µ)µ2 dµ

(all with units [J m−2 s−1 Hz−1 sr−1]).

We can also define the integral quantities

J =

∫ ∞

0
Jν dν

F =

∫ ∞

0
Fν dν

K =

∫ ∞

0
Kν dν
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3.5 Other ‘Fluxes’, ‘Intensities’

Astronomers can be rather careless in their use of the terms ‘flux’ and ‘intensity’. The ‘fluxes’ and
‘intensities’ discussed so far can all be quantified in terms of physical (e.g., SI) units. Often, however,
astronomical signals are measured in more arbitrary ways (such ‘integrated signal at the detector’,
‘counts’, or even ‘photographic density’); in such cases, it’s not unusual to see the signal referred to as a
‘flux’ (or ‘intensity’) in a spectrum, but this is just a loose shorthand, and doesn’t allude to the quantities
defined in this section.

There are other physically-based quantities that one should be aware of. For example, discussions of
model stellar atmospheres may refer to the ‘astrophysical flux’; this is given by Fν/π (also called, rarely,
the ‘radiative flux’), which is evidently similar to the Eddington flux, Hν = Fν/(4π), which has itself
occasionally been referred to as the ‘Harvard flux’. Different authors may refer to any of what we’ve
called the ‘physical flux’, ‘astrophysical flux’, ‘Eddington flux’ etc. as simply ‘the flux’.

3.6 Radiation Energy Density, Uν

Consider some volume of space containing a given number of photons; the photons have energy, so we
can discuss the density of radiant energy. From eqtn. (3.1), and referring to Fig. 3.1,

dEν = Iν(θ) dS dt dν dΩ.

We can eliminate the time dependence5 by noting that there is a single-valued correspondence6 between
time and distance for radiation. Defining a characteristic length ` = ct, dt = d`/c, and

dEν = Iν(θ) dS
d`
c

dν dΩ

=
Iν(θ)

c
dV dν dΩ (3.14)

where the volume element dV = dS d`. We integrate over solid angle and volume to obtain the mean
radiation energy density per unit frequency (implicitly, per unit volume):

Uν dν =
1
V

∫
V

∫
Ω

dEν

=
1
c

∫
4π

Iν dν dΩ

5Assuming that no time dependence exists; that is, that for every photon leaving some volume of space, a compensating
photon enters. This is an excellent approximation under many circumstances.

6Well, nearly single-valued; the speed at which radiation propagates actually depends on the refractive index of the medium
through which it moves – e.g., the speed of light in water is only 3c/4. The actual value doesn’t matter in the present context, as
the implied volumes cancel out.
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whence

Uν =
1
c

∫
4π

Iν dΩ

=
4π
c

Jν [J m−3 Hz−1]
[

from eqtn. (3.2): Jν = 1/4π
∫

Iν dΩ
]

(3.15)

Again, this is explicitly frequency dependent; the total energy density is obtained by integrating over
frequency:

U =

∞∫
0

Uν dν.

For black-body radiation, Jν(= Iν) = Bν, and

U =

∞∫
0

4π
c

Bν dν

but
∫
πBν = σT 4 (eqtn. (C.7)) so

U =
4σ
c

T 4 ≡ aT 4

= 7.55 × 10−16 T 4 J m−3 (3.16)

where T is in kelvin, σ is the Stefan-Boltzmann constant, and a is the ‘radiation constant’. Note that the
energy density of black-body radiation is a fixed quantity (for a given temperature).

For a given form of spectrum, the energy density in radiation must correspond to a specific number
density of photons:

nphot =

∞∫
0

Uν

hν
dν.

For the particular case of a black-body spectrum, this evaluates to

nphot ' 2 × 107 T 3 photons m−3. (3.17)

Dividing eqtn. (3.16) by (3.17) gives the mean energy per photon for black-body radiation,

hν = 3.78 × 10−23T = 2.74kT (3.18)

(although there is, of course, a broad spread in the energies of individual photons).
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3.7 Radiation pressure, and the equation of state for radiation

A photon carries momentum E/c (= hν/c).7 Because there is always a flux of photons, there is a
corresponding momentum flux; and a momentum flux (momentum per unit time, per unit area)
represents pressure.8 If photons encounter a surface at some angle θ to the normal, the component of
momentum perpendicular to the surface per unit time per unit area is that pressure,

dPν =
dEν

c
× cos θ

1
dt dA dν

(where we have chosen to express the photon pressure ‘per unit frequency’, dν); but the specific
intensity is

Iν =
dEν

dA cos θ dΩ dν dt
, (3.1)

whence

dPν =
Iν
c

cos2 θ dΩ

i.e.,

Pν =
1
c

∫
4π

Iνµ2 dΩ [J m−3 Hz−1 ≡Pa Hz−1] (3.19)

We know that

∫
4π

dΩ =

2π∫
0

+1∫
−1

dµ dφ (3.3)

so

Pν =
2π
c

∫ +1

−1
Iνµ2 dµ.

We encountered the K integral (the second moment of the radiation field),

Kν =
1
2

+1∫
−1

Iν(µ)µ2 dµ, (3.12)

in Section 3.4; we now see that

Pν =
4π
c

Kν. (3.20)

7It may help to note that, classically, momentum is mass times velocity. From E = mc2 = hν, the photon rest mass is hν/c2,
and its velocity is c, hence momentum is hν/c.

8Dimensional arguments validate this; in the SI system, momentum has units of kg m s−1, and momentum flux has units of
kg m s−1, m−2, s−1; i.e., kg m−1 s−2,= N m−2 = Pa – the units of pressure. Pressure in turn is force per unit area (where force is
measured in Newtons, = J m−1 = kg m s−2).
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For an isotropic radiation field we know that Kν = 1/3Iν = 1/3Jν (eqtn. 3.13), and so

Pν =
4π
3c

Iν =
4π
3c

Jν.

In this isotropic case we also have

Uν =
4π
c

Jν =
4π
c

Iν

(eqtn. 3.15) so – for an isotropic radiation field – the radiation pressure is

Pν =
1
3

Uν.

For black-body radiation we can integrate the radiation energy density analytically over frequency
(
∫

Uν dν = aT 4 = 4σ/cT 4; eqtn. 3.16), giving

PR =
1
3

aT 4 =
4σ
3c

T 4 [J m−3 ≡ N m−2 ≡ Pa]. (3.21)

In that it expresses the relationship between pressure and temperature, eqtn. (3.21) is the equation of
state for (black-body) radiation.

3.8 The Eddington limit

In the isotropic case, PR (or Pν) is a scalar quantity – it has magnitude but no explicit direction (like air
pressure, locally, on Earth). For an anisotropic radiation field, the radiation pressure has a direction
(normally outwards from a star), and is a vector quantity. It will not be surprising that radiation pressure
plays a particularly important role in luminous stars; and at their photospheres the radiation field is,
evidently, no longer even approximately isotropic (since the radiation is escaping from the surface).

If we consider some spherical surface at distance r from the energy-generating centre of a star, where all
photons are flowing outwards (i.e., the surface of the star), the total photon momentum flux, per unit
area per unit time, is

L
c

/
(4πr2) [J m−3 = kg m−1 s−2]

(recalling that the momentum of a single photon is E/c,= hν/c, so the total momentum is L/c). A major
opacity source in hot-star atmospheres is Thomson (electron) scattering, for which the cross-section is

σT

= 8π
3

(
e2

mec2

)2 = 6.7 × 10−29 m2

(§5.5.1). The radiation force exerted on an electron is electron is

FR =
σTL

4πr2c
[J m−1 ≡ N]
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which is then transmitted to positive ions by electrostatic interactions. For stability, this outward force
must be no greater than the inward gravitational force; for equality (and assuming that the atmosphere
consists simply of fully ionized hydrogen)

σTL
4πr2c

=
GM (m(H) + me)

r2 '
GMm(H)

r2 .

This equality gives a limit on the maximum luminosity as a function of mass for a stable star – the
Eddington Luminosity,

LEdd =
4πGMc m(H)

σT
(3.22)

' 1.3 × 1031 M
M�

[J s−1], or

LEdd

L�
' 3.4 × 104 M

M�

Since luminosity is proportional to mass to some power (roughly, L ∝ M3−4 on the upper main
sequence; cf. Section 12.4), we infer that the Eddington Luminosity imposes an upper limit on the mass
of stable stars.

(In practice, instabilities may cause a super-Eddington atmosphere to become clumpy, or ‘porous’;
radiation is then able to escape through paths of reduced optical depth between the clumps.
Nevertheless, the Eddington limit represents a good approximation to the upper limit to stellar
luminosity. We see this limit as an upper bound to the distribution of stars in the Hertzsprung-Russell
diagram, the so-called ‘Humphreys-Davidson limit’.)
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Section 4

The interaction of radiation with matter
[review of 0018 material]

4.1 Emission: increasing intensity

A common astrophysical1 definition of the (monochromatic) emissivity is the energy generated per unit
volume,2 per unit time, per unit frequency, per unit solid angle:

jν =
dEν

dV dt dν dΩ
[J m−3 s−1 Hz−1 sr−1]. (4.1)

The change (increase) in Iν along an element of distance ds caused by the emissivity of a volume of
material of unit cross-sectional area is just:

dIν = + jνds. (4.2)

4.2 Extinction: decreasing intensity

‘Extinction’ is a general term for the removal of light from a beam. Two different classes of process
contribute to the extinction: absorption and scattering. Absorption (sometimes called ‘true absorption’)
results in the destruction of photons; scattering merely involves redirecting photons in some new
direction. For a beam directed towards the observer, scattering still has the effect of diminishing the
recorded signal, so for the moment the two types of process can be treated together.

The amount of intensity removed from a beam by extinction in (say) a gas cloud must depend on

– The initial strength of the beam (the more light there is, the more you can remove)

1Other definitions of ‘emissivity’ occur in physics.
2The emissivity can also be defined per unit mass ( jν/ρ); or, in principle, per particle.
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– The number of particles (absorbers/scatterers)

– The microphysics of the particles – specifically, how likely they are to absorb (or scatter) an
incident photon. This microphysics is characterized by an effective cross-section per particle
presented to the radiation.

By analogy with eqtn. (4.2), we can therefore write the change (decrease) in intensity along length ds as

dIν = −aνnIν ds (4.3)

for a number density of n extinguishing particles per unit volume, with aν the ‘extinction coefficient’, or
cross-section (in units of area) per particle.

4.3 Opacity

In astrophysical applications, it is customary to combine the cross-section per particle (having
dimensions of area) with the number of particles (having dimensions of ‘per volume’); i.e.,

aνn ≡ kν(= ka
ν + ks

ν)

where kν, the (volume) opacity, has dimensions of area per unit volume (i.e., length), or SI units of m−1;
and we have acknowledged the separate contributions of absorption and scattering processes.

We can now write eqtn. (4.3) as

dIν = −kνIν ds, (4.4)

recalling that kν may have contributions from both true absorption and scattering (ka
ν, ks

ν).

Alternatively, expressed as ‘per unit mass’, the opacity is

aνn ≡ κνρ

whence

dIν = −κνρ(s)Iν ds

for mass density ρ, where κν is the (monochromatic) mass extinction coefficient or, more usually, the
opacity per unit mass (dimensions of area per unit mass; SI units of m2 kg−1).

The opacity is related to the probability that, at a given point, a photon of frequency ν will interact with
matter; that is, in zones with high opacity, the radiation field and matter are strongly coupled, while
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zones with small opacity the photons flow freely. In this context, the volume opacity has a
straightforward and useful physical interpretation – it is the reciprocal of the photon mean free path, `ν:

`ν ≡ 1/kν.

(This will be demonstrated Section 7.2.)

[Be aware that the nomenclature we use here is not universally adopted; in the literature, κ is generally
used to indicate opacity ‘per unit mass’, but some authors use it for opacity ‘per unit volume’; other
authors use, e.g., aν in place of kν; and so on.]

4.4 Optical depth

We can often calculate, but rarely measure, opacity as a function of position along a given path.
Observationally, all that is usually accessible is the cumulative effect of the opacity integrated along the
line of sight; this is quantified by the optical depth,

τν =

∫ D

0
kν(s) ds =

∫ D

0
κν ρ(s) ds =

∫ D

0
aν n(s) ds (4.5)

over distance D.

Similarly, the parameter ‘s’ that expresses the physical location along the photon propagation direction
is often observationally inaccessible; consequently, it is useful (or essential) to change the independent
variable and express the radiative and matter variables (Iν, ρ, T , etc) in terms of τν. The differential
relation between dτν and ds is

dτν = ±kν ds = ±κνρ ds (4.6)

where the ‘±’ depends on the geometry applicable in a given situation – ‘+’ if s and τ are chosen to
increase in the same direction, ‘−’ otherwise. (In stellar atmospheres, physical distance is often
measured ‘outwards’, while optical depth is conveniently measured ‘inwards’.)

A simple illustration of optical depth is afforded by the effect of interstellar extinction. A star at some
fixed distance D undergoes different amounts of extinction at different wavelengths – over the optical
regime, more blue light than red is removed. We understand this to reflect the wavelength dependence
of the opacity.

Interstellar extinction is often measured and expressed photometrically; the ratio of the observed flux,
fλ, to the flux that would be observed in the absence of extinction, fλ(0), is expressed in magnitudes as

Aλ = −2.5 log10

(
fλ

fλ(0)

)
= −2.5 log10

(
exp {−τλ}

)
, = 1.086τλ

(using eqtn. 7.3 to relate flux ratio to optical depth).
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Section 5

Opacity sources

5.1 Introduction

Recall the distinction between absorption and scattering opacity sources:

• Under most circumstances of interest to us, scattering effectively involves a photon emerging
from the scattering event with virtually the same energy (in the rest frame of the scatterer), but in
a new direction.1

• Absorption processes can be regarded as resulting in the destruction of a photon (through
conversion into other forms of energy, whether radiative or kinetic [thermal]; the inverse
processes are sources of emission).

Both general mechanisms can give rise to continuous opacities (across a wide range of
frequencies/wavelengths) or to line opacities (across a narrow range of frequencies). Processes which
can be important in the stellar-astrophysics context include:

bound–bound line absorption, or (scat.: photoexcitation followed promptly by
scattering radiative decay through the same channel)

ro-vibrational line absorption changes in molecular quantum states
bound–free cont. absorption photoionization
free–free cont. absorption bremsstrahlung
electron scattering cont. scattering of photons by free electrons
Rayleigh scattering cont. scattering of photons by bound electrons

1In Compton scattering, energy is transferred from a high-energy photon to the scattering electron (or vice versa for inverse
Compton scattering). These processes are important at X-ray and γ-ray energies; at lower energies, classical Thomson scattering
dominates. For our purposes here, ‘electron scattering’ can be regarded as synonymous with Thomson scattering. Note, too
that by ‘electron scattering’, astronomers almost always mean scattering by electrons – not of electrons.
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[This list is not comprehensive; in particular, high-energy processes are largely excluded. For example,
Compton scattering (the general form of electron scattering), pair production (decay of a photon to
particle pair), and photodissociation of nuclei may need to be considered in extreme environments.]

5.2 Mean opacities

The calculation of opacities is a considerable undertaking, even for time-independent situations.2 The
analyst has to consider an arbitrarily large number of transitions, for an arbitrarily large range of
physical conditions. The work is conceptually straightforward (for an atomic or molecular physicist),
but represents a substantial computational challenge, requiring vast quantities of atomic and molecular
data. The challenge has been largely addressed for stellar interiors (where a number of simplifications
are possible), particularly through the opal and Opacity Project (OP) consortia; and while sophisticated
numerical methods have allowed good progress for atomic and ionic transitions, the calculation of the
accurate data required for molecular opacities is an ongoing industry.

To compute a detailed emergent spectrum, a full, frequency-dependent description of all important
opacities is required. However, for some applications (particularly when computing the overall radiative
energy transport – for example, in interior structures), we just want to know how much radiative energy
gets through in total, without being too bothered about the detailed frequency dependence. In these
cases we still need to start with some knowledge of the frequency dependences of both the opacities
and the radiation field, since most energy is transported at those frequences where the flux is high and
the opacity is low. However, for practical purposes we can construct a variety of frequency-independent
mean opacities, choosing suitable frequency-dependent weighting factors related to the radiation field.
Precomputing these mean opacities, and tabulating them as functions of temperature and density, is a
one-time exercise that allows for considerable efficiencies in calculation of stellar-interior structures, for
example.

5.2.1 Planck mean opacity [not for lectures]

Perhaps the most straightfoward ‘mean opacity’ is the flux-weighted, frequency-integrated Planck
mean, defined as

kP(ρ,T ) =

∫ ∞
0 ka

ν(ρ,T ) Bν(T ) dν∫ ∞
0 Bν(T ) dν

,

2Time-independent opacities are applicable when astrophysical conditions (e.g., pressure, temperature, abundances) vary
on much longer timescales than the timescales for microscopic processes (photoionization, excitation, etc.). This is true in all
circumstances considered in these notes.
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which weights the opacities by the intensity of radiation. At frequencies where the intensity is very
small, the opacities don’t much matter in the context of energy transport, because there’s just so little
energy to worry about. Note that the Planck mean is obtained by averaging over only absorption
opacities; scattering cancels out.

The Planck mean opacity has applications to energy transport in an optically thin plasma. The
weighting function, Bν(T ), peaks at hν ' 2.7kT (eqtn. 3.18); that is, opacities around that frequency
have the greatest effect.

5.2.2 The Rosseland mean

The Norwegian astrophysicist Sven Rosseland introduced another form of frequency-averaged mean
opacity, now called the Rosseland mean opacity, kR (= κRρ). It is defined by

1

kR(ρ,T )

∫ ∞

0

dBν(T )
dT

dν ≡
∫ ∞

0

1
kν(ρ,T )

dBν(T )
dT

dν; (5.1)

i.e.,

1

kR
=

∫ ∞
0

1
kν

dBν(T )
dT

dν∫ ∞
0

dBν(T )
dT

dν
(5.2)

where Bν(T ) is the Planck function,

Bν(T ) =
2hν3

c2

/ (
exp {hν/kT } − 1

)
,

whence

dBν(T )
dT

=
2h2ν4

c2kT 2

exp {hν/kT }(
exp {hν/kT } − 1

)2 .

We see that the Rosseland mean is obtained from the weighted sum of the inverse of all (absorption +

scattering) opacity sources – that is, it is the weighted harmonic mean of kν, where
(i) the calculation of kR(ρ,T ) favours frequency regions of low opacity;
(ii) the weighting factor peaks at hνp = 3.8kT , and is small for very low and very high frequencies.

The Rosseland mean opacity isn’t some arbitrary construct, but was derived as the appropriate
description of the mean opacity required to yield the correct value for the frequency-integrated radiative
energy flux in an optically thick medium; we shall investigate this in Section 12 (eqtn. 12.4). It therefore
offers a number of advantages for analytical work in stellar structure and stellar atmospheres; and it
remains (in only slightly modified form) an important and commonly used characterization of opacities
in stellar interiors for modern computational studies.

31



5.3 Free–free absorption

We begin our discussion of individual astrophysical opacity sources with free–free absorption, partly
because its Rosseland mean is straightforward to evaluate, and introduces us to ‘Kramers’ opacity’, a
useful approximate analytical representation of several opacity sources.

Free–free processes arise when an unbound electron interacts with an ion, but is not captured – i.e., it is
a free electron before the interaction, and is a free electron afterwards. Conceptually, as the electron
moves through the electric field3 of the ion it is initially accelerated, gaining energy, and subsequently
decelerated, losing energy; in general, the electron/ion pair emerges with a different kinetic energy to
the initial state, and the nett effect is that a photon is emitted or absorbed.

Although our aim in this section is to examine free–free absorption, it is convenient to start by
considering the inverse process of free–free emission (often referred to a ‘bremsstrahlung’, usually
translated as ‘braking radiation’). As an ansatz, we might reasonably anticipate that the strength of
free–free emission will depend on the number of particles, and the frequency dependence on their
velocity distribution of the particles. A particularly important case is when the electron velocity
distribution is Maxwellian, giving rise to ‘thermal bremsstrahlung’, whose form we can infer from
general principles.

• First, for a thermal (Maxwellian) velocity distribution, the number of electrons with kinetic energy E
is proportional to the Boltzmann factor, exp(−E/kT ); so we reasonably expect any corresponding
free–free radiation to reflect this, and hence to have a frequency dependence proportional to
exp(−hν/kT ).

• Secondly, since free–free emission involves an interaction between ions and electrons, the rate of
emission per unit volume must be proportional to the product of the densities, nine; but for a fully
ionized plasma, ne = Z̄ni (where Z̄ is the average atomic number), so the strength should depend on
n2

i (∝ n2
e ,∝ ρ

2).

• Finally, the mean thermal velocity of the electrons scales with temperature as T 1/2 (since
kT ∝ m32/2), so the time over which they are able to interact radiatively with (much more massive,
hence relatively static) ions is ∝ T−1/2.

Hence, overall, we expect the volume emissivity of free–free radiation to scale as

jν ∝ T−1/2n2
i exp(−hν/kT ), ∝ T−1/2ρ2 exp(−hν/kT ).

Returning to the question of free–free absorption, Kirchhoff’s law tells us that, in thermodynamic

3A free electron may also be accelerated by a magnetic field, giving rise to cyclotron radiation or, for extremely relativistic
particles, synchrotron radiation. (Cyclotrons and synchrotrons were particle accelerators developed in the 1930s and 1940s.)
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equilibrium,

jν = kν Bν, i.e.,

∝ kν ν3 (
exp {hν/kT } − 1

)−1

(using the Planck function), so our heuristic result for free–free opacity is

kν ∝ ρ2ν−3T−1/2 (
1 − exp {−hν/kT }

)
.

A more rigorous analysis gives virtually the same form,

kν = 3.7 × 1010 Z2neniν
−3T−1/2

(
1 − exp

{
−

hν
kT

})
gff m−1 (5.3)

where gff is the ‘Gaunt factor’,4 a quantum-mechanical correction factor which is of order unity at
optical/UV wavelengths (but which may be an order of magnitude larger in the radio regime).

5.3.1 The Rosseland mean opacity for free–free absorption

Recall that the Rosseland mean opacity is defined by

1

kR(ρ,T )

∫ ∞

0

dBν(T )
dT

dν ≡
∫ ∞

0

1
kν(ρ,T )

dBν(T )
dT

dν. (5.1)

We can easily evaluate the integralon left-hand side of eqtn. (5.1), for given temperature T :∫ ∞

0

dBν(T )
dT

dν→
d

dT

∫ ∞

0
Bν dν

=
d(σT 4/π)

dT
= 4σT 3/π

(where we can take the ‘dT ’ out of the integral because we’re integrating over frequency, and
temperature isn’t a function of frequency).

Next, consider the right-hand side; substituting for dBν(T )/dT we obtain∫ ∞

0

1
kν

dBν(T )
dT

dν→
∫ ∞

0

1
kν

2h2ν4

c2kT 2

exp {hν/kT }(
exp {hν/kT } − 1

)2 dν;

and using eqtn. (5.3) for kν,

∝

∫ ∞

0

1
ρ2ν−3T−1/2 (

1 − exp {−hν/kT }
) 2h2ν4

c2kT 2

exp {hν/kT }(
exp {hν/kT } − 1

)2 dν

∝ ρ−2T−3/2
∫ ∞

0
ν7 exp {2hν/kT }(

exp {hν/kT } − 1
)3 dν.

4Sometime called the Kramers-Gaunt factor
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We simplify this by setting hν/kT ≡ x,

∝ ρ−2T−3/2
∫ ∞

0
T 8x7 exp {2x}(

exp{x} − 1
)3 dx.

Note that the integral is still over frequency, so the T 8 term can come out of the integral. Combining our
results so far, we obtain

1

kR
∝ ρ−2T 7/2

∫ ∞

0
x7 exp {2x}(

exp{x} − 1
)3 dx.

The integral is called the ‘Strömgren integral’, and, by inspection, we can see that it evaluates to a
constant (∼ 5020). We therefore arrive at our final expression for the Rosseland mean opacity for
free–free absorption,

κff
R = k

ff

R/ρ = κff
0 ρT−7/2,

' 1022Z2ρT−7/2 m2 kg−1 (5.4)

where κ0 is a constant for a given chemical composition, and the final result is an approximation to
numerical calculations.

5.3.2 Opacity ‘laws’ & Kramers’ opacity

By construction, the Rosseland mean opacity is frequency independent, but of course it still depends on
temperature and density (because kν is a function of these variables). In many circumstances
(particularly for analytical work), this dependence can be reasonably approximated by power-law
representations of the form

κ ' κ0ρ
pT q. (5.5)

Eqtn. 5.4 is evidently an example of a such an ‘opacity law’ (of course, ‘law’ here doesn’t imply a basic
law of nature, like Newton’s laws of motion). For free–free, we’ve seen that

κ ∝ ρT−3.5;

this specific opacity law is called Kramers’ opacity law (after Hendrik ‘Hans’ Kramers, who derived it
in 1923). Kramers’ law is particularly important, since as well as being an exact result for free–free
absorption, it turns out also to be a reasonable approximation for some other major radiative processes,
and is useful for computing models of stellar interiors. Other opacity ‘laws’ that you may come across
include

Schwarzschild’s opacity: p = 0.75 q = −3.5

electron-scattering opacity (§5.5): p = 0 q = 0
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5.4 Bound–free, bound–bound

Of course, a thorough analysis of the opacities from these sources requires detailed numerical
evaluation of cross-sections and the ionization and excitation conditions. This is now feasible
computationally, but some insight can be gained from more general considerations.

5.4.1 Bound–free

To quote Schwarzschild (1958, Structure and Evolution of the Stars), “we shall now drop all
considerations of accuracy and derive some very approximate formulae for the [bound–free] absorption
coefficient”.

For some element E in ionization state i (i = 0 for a neutral species, i = 1 for once ionized, etc.), with
number density n(Ei), the bound-free volume opacity is

kν(Ei) = σbf
ν (Ei) × n(Ei)

Although accurate photoionization cross-sections, σν, require detailed quantum-mechanical
calculations, but we can gain insight by adopting the result for a simple hydrogenic system.5 Dropping
the ‘Ei’ qualifier to simplify notation,

σbf
ν =

64π4mee10

3
√

3ch6
S 4

n`

Z4
i gbf

ν

n5ν3

where Zi is the atomic number (nuclear charge), S n` is a ‘screening factor’ for quantum numbers n, `
(resulting from electrons in interior orbitals), and gbf

ν is the bound–free gaunt factor (typically of order
unity). Of course, this holds only when the energy of the incident photon exceeds the ionization energy,
given by

hν > χi,=
2π2mee4

h2

Z2
i

n2 .

[That is, the bound-free cross-section for a given element in a given excitation state increases as ∼ ν−3,
up to this threshold frequency, at which point it drops to zero. This introduces a series of absorption
‘edges’ corresponding to different excitation states – for example, the Lyman, Balmer, Paschen. . . in the
hydrogen spectrum.] Subsuming many constant (or fixed) terms into a constant of proportionality, we
see that

σbf
ν ∝

Z2
i Z2

i

ν3 ∝
Z2

i χi

ν3 .

5A ‘hydrogenic system’ in this context means an ion with only one electron, or one electron in the valence shell. And be
careful: in this discussion, an unqualified n represents the principal quantum number, not the density!
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We next recall that the Saha equation, which gives us the ratio of two consecutive stages of ionization:

ni

ni+1
=

ne

2
Ui(T )

Ui+1(T )

(
h2

2πmekT

)3/2

exp {χi/kT }

(where ni ≡ n(Ei) and Ui(T ) is the partition function; cf. Appendix D). To make progress we make the
simplifying (and not unreasonable) assumption that an element exists primarily in a single, dominant
stage of ionization. The principal source of bound–free opacity for that element is then photoionization
to that stage, from the next lower stage of ionization, in which case ni+1 ' nE , the number density of the
element, and

ni ∝ nEnekT−3/2 exp {χi/kT } ,

∝ ρ2kT−3/2 exp {χi/kT }

for given abundances.

Overall, therefore, for element E,

kν ∝
Z2

i χi

ν3 ρ2(kT )−3/2 exp {χi/kT }

∝ Z2
i
χi

kT
ν−3 ρ2(kT )−1/2 exp {χi/kT }

In the spirit of dominant ions, we note that stages with ionization energies greatly different to ∼ kT
won’t contribute significantly to the opacity.6 Consequently, we need only be concerned with the
regime for which χ/kT ' 1, leaving us with

kν/ρ ∝ ν−3 ρ2T−1/2

which we should recognize as similar to the functional form of free–free, eqtn. (5.3).

The total bound–free opacity will be the sum over all elements Z, in all ionization stages i, and all
excitation states n. This summation, and the integration to construct the Rosseland mean, smooth out
the effects of the discontinuites at ionization edges, leading to a Rosseland mean that has a
Kramers’-type form,

κbf
R ' 1024Z(1 + X)ρT−7/2 m2 kg−1

= κbf
0 ρT−7/2.

6Those with χ � kT will nearly all be ionized to higher stages, and hence not numerous; for those with χ � kT there are
few sufficiently energetic photons to be absorbed, so any opacity is unimportant.
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5.4.2 Bound–bound

At high temperatures (& 106 K) the radiation is energetic enough to ionize the plasma, but at cooler
temperatures bound–bound transitions are a major source of opacity. Evaluating this opacity involves
calculations for millions of lines (transitions). However, in stellar interiors, pressure and temperature
broadening are substantial, resulting in a quasi-continuous opacity arising from numerous broad,
overlapping lines. Moreover, the bound–bound cross-sections for hydrogenic species have the same
form as the bound–free. We can therefore anticipate that, overall (though not within a particular line!),
the broad frequency dependence may again vary like ν−3. Moreover, we might also expect a ρ2 density
dependence (as the rate of bound-bound processes depends on the number density of targets and the
number density of colliders), and therefore, plausibly, a Kramers-like opacity law. This expectation is
born out by the results of detailed calculations (Fig. 5.1), which yield

κbb
R ' 1024ZρT−7/2 m2 kg−1

[In practice, modern work takes advantage of a Kramers-like temperature dependence, tabulating κ(T )
as a function of R = ρ/T 3, rather than simply ρ.]

5.4.3 H− opacity

A free electron can attach to a neutral hydrogen atom, forming the negative hydrogen ion, H− (chemists
call this hydride, or the hydrogen anion, but astronomers just say ‘H-minus’). Like other species, this
ion can absorb photons through bound–free or free–free processes:7

H− + hν
 H + e−

H− + e− + hν
 H− + e−

The H− ion has an ionization potential8 of only 0.754 eV (corresponding to a wavelength of ∼1.65 µm),
and so is easily destroyed; in the solar atmosphere, only about 1 in 107 hydrogen atoms is in the form of
H−.

However, for the neutral hydrogen, only electrons in n = 3 contribute to opacity in the optical (where
most of the radiation emerges), and the Boltzmann equation tells us that as few as ∼1 in 109 H0 atoms
has its electron in n = 3 at ∼6000 K. The photoionization cross-sections for n = 3 H0 and for H− are

7Note that, while we refer to ‘H− opacity’, it is not a separate mechanism – just a specific instance of bound–free & free-
free processes that happens to be particularly important in the atmospheres of the Sun and solar-type stars. In this case, the
bound–free process is usually refered to as photodetachment, or photodissociation, rather than photoionization.

8Or binding energy, or dissociation energy. The ion can only exist in the ground state – there are no other bound states
with excitation energies less than the dissociation energy – which is why it can only form from ground-state H0. The quoted
numerical value is from Andersen, Haugen & Hotop, J. Phys. Chem. Ref. Data, 28, 1511, 1999.
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Figure 5.1: Radiative opacities from OPAL (Iglesias & Rogers 1996), for solar metallicity (X = 0.70,Y =

0.28,Z = 0.02) and densities log ρ = −10:+4 (g cm−3; 1 g cm−3 = 103 kg m−3 ) at steps of two dex. Kramer’s
opacity law is shown for two (arbitrary) densities separated by ∆ log ρ = 2.
The ‘floor’ at κ ' −0.5 dex cm−2 kg−1 arises from electron scattering opacity (corresponding to a fully ionized
plasma); to the left of the near-vertical dotted line, hydrogen and helium are largely neutral.
The T, ρ locus of a solar-interior model is indicated by a dashed line. Note that it falls mainly in the regime for
which Kramers’ does a pretty good job (i.e., within the dotted lines).
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Figure 5.2: H− cross-section. The bound–free ionization (or dissociation) threshold is at ∼16 500Å;
absorption at longer wavelengths arises from free-free opactity.

roughly similar, so H− dominates in the Paschen continuum (λ < 821 nm; in the Balmer continuum,
λ < 365 nm, H0 and H− have comparable overall opacity.)

H− can only form when the temperature is low enough for hydrogen to be largely neutral and low
enough that the ion isn’t dissociated; this means photospheres with Teff . 8000 K. However, we also
need a source of free electrons in order to create H−; these can only come from metals with first
ionization potentials less than that of hydrogen (i.e., < 13.6 eV). Relevant easily ionized, cosmically
abundant sources include aluminium (first ionization potential 6.0 eV), magnesium (7.6 eV), iron
(7.9 eV), and silicon (8.2 eV), requiring temperatures above ∼3000 K to produce free electrons. Thus
H− is important over only a limited temperature range – but the Sun’s effective temperature happens to
be right in the middle of that range.

The total H− opacity is proportional to the electron density. Since the electrons come from the metals
(not H, He), the opacity rises with metallicity, and with temperature – until the ion begins to be
collisionally destroyed.

The cross-section is not a simple power law in frequency; the bound–free component peaks around
8000Å, with the free–free component rising to longer wavelengths (Fig. 5.2). It should not be a
surprise, therefore, that, when integrated over frequency, H− opacity does not follow a Kramers’ law;
rather, very roughly,

κR(H−) ' 10−30Zρ1/2T 9 m2 kg−1.
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Figure 5.3: Electron scattering in the Thomson limit; the case of a linearly polarized incident wave. E
indicates the electric field of the incident and scattered waves (with modulus E0).

5.5 Electron scattering: Thomson scattering

In astrophysical applicatiosn, ‘electron scattering’ refers to the scattering of photons by free electrons in
a plasma. A photon incident on an electron induces a force (because it’s an electromagnetic wave
interacting with an electrically charged particle). In response, the starts oscillating as a dipole; and an
oscillating dipole emits radiation. This process was first studied by J.J. Thomson (1856–1940),9 in the
non-relativistic case. It can be considered the low(-photon)-energy limit of the more general case of
Compton scattering.

In this low-energy limit we require the photon energy to be less than the electron rest-mass energy:
hν � mec2. The simple physical interpretation is that the electron can’t gain momentum from the
photon, and can be considered static. Suppose that the incoming photons can be considered as
continuous (and linearly polarized) plane wave. The electric field as a function of time t is described by

E = E0 sin(ωt) ẑ

(where ω = 2πν is the angular frequency and ẑ is the unit vector in the direction of the electric-field
variability). As long as the electron remains non-relativistic, the (Lorentz) force exerted on it by the
electromagnetic wave comes predominantly from this electric field, and the electron’s equation of
motion is

me
d2z
dt2 = −e E0 sin(ωt) (5.6)

9Thomson, seven of his research assistants, and his son, G.P. Thomson, all won Nobel Prizes in physics! As far as I know,
Lord Kelvin (William Thomson) was no relation.
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which has the solution

z =
e E0

me ω2 sin(ωt)

(where e is the electron charge). That is, the electron oscillates in the direction of the incoming wave’s
electric field (as one might intuitively expect). The electron can now be thought of as an oscillating
electric dipole – which emits electromagnetic radiation. The emitted radiation will have the same
frequency as the incoming radiation, but, in general, a different direction; that is, an incoming photon is
scattered.

5.5.1 Cross-section

We first quote two results without proof:
(i) The Poynting flux – the energy flux of the incoming electromagnetic wave (the time-averaged
magnitude of the Poynting vector) – is given by

〈S 〉 =
ε0cE2

0

2
;

(ii) the time-averaged power emitted by the dipole (electron) into solid angle dΩ at angle θ to the dipole
is (from Larmor’s formula; cf. Fig. 5.3)〈

dW
dΩ

〉
=

(
e2

4πε0mec2

)2 ε0cE2
0

2
sin2 θ

where ε0 is the permittivity of free space (vacuum permittivity), and SI forms are used.

From these results we can determine the differential scattering cross-section, defined as

dσ
dΩ

=

〈
dW
dΩ

〉/
〈S 〉

(which has dimensions of power per solid angle divided by flux; i.e., area per unit solid angle10)

=

(
e2

4πε0mec2

)2

sin2 θ

≡ r2
0 sin2 θ (5.7)

where the value of r0, the ‘classical electron radius’, is 2.817 × 10−15 m. (Note that the cross-section is
inversely proportional to mass squared; thus scattering by protons, for example, is generally negligible.)

The total (Thomson) cross-section is defined as

σT =

∫
dσ
dΩ

dΩ;
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as usual, we set µ = cos θ and recall that dΩ = sin θ dθ dφ = −dµdφ, giving

σT =

∫ 2π

0

∫ +1

−1
r2

0(1 − µ2) dµ dφ

= 2π r2
0

∫ +1

−1
(1 − µ2) dµ

=
8π
3

r2
0 (5.8)

Numerically, the Thomson cross-section is σT = 6.65 × 10−29 m2.

[Formally, the discussion so far has focussed on a linearly polarized beam. We can compute the differential
cross-section for unpolarized light by noting that it can be treated as the superposition of two orthogonally
polarized waves. If we define ϑ as the angle between the scattered radiation and the original radiation (so that
ϑ = π/2 − θ), the result is

dσ
dΩ

=
1
2

[
r2

0(1 + cos2 ϑ)
]

and the total cross-section is the same as before (as it must be, since an electron at rest has no intrinsic

polarization, so it has to react to all linear polarizations in the same way [Miller])].

We can now recognise some of the more important properties of the cross-sections for Thomson
scattering:

1. Eqtn. (5.7) has a symmetry: the scattering cross-section is unchanged under reflection (θ → −θ) –
but is not isotropic. That is. . .

2. Eqtn. (5.7) depends on the angle θ between incident and scattered photons. This can lead to
electron scattering being a polarigenic process in asymmetric geometries.

3. The total cross-section is the same for polarized and unpolarized radiation (since an electron at
rest has no intrinsic directionality)

4. Both the total and differential cross-sections are frequency independent. This means that (in the
non-relativistic limit) scattering is equally effective at all frequencies – i.e., it is ‘grey’.

5. Furthermore, the process does not alter the energy of the photon: the incoming and the scattered
photon have the same frequency (although their direction of propagation is different) – that is,
Thomson scattering is coherent.11

The Cosmic Microwave Background, and the solar K-corona, are familiar astrophysical phenomena in
which Thomson scattering is of importance.

11If relativistic velocities pertain (photon energies comparable to electron rest mass), it’s necessary to use the cross-section
calculated in the Compton limit, which is energy dependent (i.e., involves a nett exchange of energy between photons and
electrons).
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5.6 Rayleigh scattering

If a photon scatters off an electron which is bound in an atom the process is called ‘Rayleigh scattering’.
It can occur only if the photon energy hν is much less than the energy spacings of the atom (otherwise a
bound–bound transition occurs).

Electrons are set into a resonant motion along their orbits by the photon. The electron equation of
motion is

me
d2z
dt2 = −meω

2
0z − e E0 sin(ωt) (5.9)

(cp. eqtn. 5.6, noting the extra term on the rhs from orbital motion), where we are, in effect, modelling
the atom as a simple harmonic oscillator of natural frequency ω0. Eqtn. (5.9) has the solution

z =
e E0

me (ω2 − ω2
0)

sin(ωt). (5.10)

An analysis analogous to that for the Thomson cross-section (eqtn. 5.7) leads to a differential
cross-section

dσ
dΩ

=
ω4

(ω2 − ω2
0)2

r2
0 sin2 θ (5.11)

(where the ‘sin2 θ’ term indicates that Rayleigh scattering, like Thomson scattering, is a potentially
polarigenic process) and total cross-section

σR =
ω4

(ω2 − ω2
0)2

σT (5.12)

In the limit in which the frequency of the incident radiation is much greater than the natural frequency
of the atom (ω � ω0, or ν � ν0), eqtns. (5.11) and (5.12) reduce to the previously obtained expressions
for scattering by a free electron (eqtns. 5.7, 5.8); in other words, an electron in an atom acts very much
like a free electron as far as scattering of high frequency radiation is concerned (as long as
bound–bound or bound–free interactions don’t come into play).

In the opposite limit, in which the frequency of the incident radiation is much less than the natural
frequency of the atom (i.e., at long wavelengths), eqtn. (5.11) yields

σR = σT

(
ν

ν0

)4

,

∝ λ−4; (5.13)

That is, the cross-section decreases with increasing wavelength.
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Rayleigh scattering is important in cool stellar atmospheres (late K and M stars). However, the most
familiar example of Rayleigh scattering is the scattering of visible radiation from the Sun by neutral
atoms in the Earth’s upper atmosphere.

(Nitrogen and oxygen are most important; the frequency of visible radiation is much less than the
typical emission frequencies of these atoms, which lie in the ultraviolet band, so it is certainly the case
that ω � ω0.)

Because blue light is scattered more effectively than red light (eqtn. (5.13), the sky appears blue (mostly
blue light is scattered into the line of sight). When the Sun is very low, the path length is longer, and the
light undergoes more scatterings; most blue light is scattered out of the line of sight, leaving a red sky.

Furthermore, inspection of the sky using polarized sunglasses on a clear day should confirm that the
daytime sky is linearly polarized.

5.7 Extinction by larger bodies [not for lectures]

For larger bodies (dust) we generally use ‘Mie theory’, developed by the German physicist Gustav
Mie12 in the early 20th century. His original classical theory of scattering applies to spheres of specified
refractive index.

Very roughly speaking,
for wavelengths short compared to the size of the particles, the scattering cross-section is about twice as
large as the geometric cross-section
for wavelengths comparable to or larger than the particle size, the scattering cross-section declines as
1/lambda where lambda is the wavelength of the light being scattered.

Interstellar dust has a typical size of ∼103Å (0.1µm), which matches the wavelength of UV radiation.
1,000 angstroms. In these circumstances, we can adopt ‘Mie scattering’.

5.8 Summary

Overall, the cross-sections for free–free, bound–free, and bound–bound processes can all be
represented, more or less accurately, as having ν−3 frequency dependencies; and their
frequency-averaged Rosseland mean opacities are, individually and collectively, often well
approximated by the Kramers’ opacity law (Fig. 5.1).

H− opacity (arising through bound–free and free–free processes) is particularly important in the
atmospheres of solar-type stars.

12Rhymes with ‘pea’, not ‘pie’.
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Electron scattering and Rayleigh scattering are further important sources of opacity in stars.

Other sources of opacity play a role, under various circumstances – for example, molecular opacities in
cool stellar atmospheres.
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Figure 5.4: Principal opacity sources in the solar photosphere (from Vernazza, Avrett & Loeser, 1976, ApJS, 30,

1). The symbols H, Si, Al, Mg, and Fe refer to neutral-atom bound-free absorption, and lines to a smoothly varying

approximation to the effects of line opacity. Note the dominance of H− (bound-free) opacity in the region of peak

flux, around 0.5µm (5000Å). 46



Section 6

Thermodynamic Equilibrium and LTE
[review of 0018 material]

In stellar atmospheres we find:

• moderate (not ‘extremely high’) densities; the equation of state is well approximated by a perfect
gas

• high temperatures; the gas is made of single atoms, ions, free electrons (and molecules in the
cooler stars)

• the state of the gas is known when we know the particle distributions over all available bound and
free energy levels; i.e., when we know the occupation numbers of these levels.

• from the occupation numbers we can compute gas pressure, opacity, emissivity of the gas. . .(in
principle) everything!

Here we consider some of the circumstances that determine the occupation numbers.

6.1 Thermal equilibrium

In thermodynamic equilibrium, the state of the gas (the occupation numbers) is specified uniquely by
the temperature T , through the equilibrium relations of statistical mechanics.

• The velocity distribution of free particles is given by a Maxwellian

• the excitation and ionization states of the gas are given by the Boltzmann+Saha equations

• the ratio between pure absorption/emission coefficients is given by the Planck function
(Kirchhoff’s law)

47



Figure 6.1: The Maxwell-Boltzmann velocity distribution

• The specific intensity Iν is isotropic and independent on the geometry of the medium and on the
chemical composition of the matter; hence for any given frequency, Iν must be only a function of
T , and is given by the Planck function,

Iν = Bν(T ) =
2hν3

c2

/ (
exp {hν/kT } − 1

)
All these distributions are functions only of temperature T .

6.1.1 The Maxwellian velocity distribution

In TE, the probability that a particle of mass m at a temperature1 T has a velocity between 3 and 3 + d3
is given by

f (v) d3 =

( m
2πkT

)3/2
exp

{
−m32

2kT

}
4πv2 d3

This distribution may be characterized in terms of the most probable speed,

30 = (2kT/m)1/2 = 12.85(T/104A)1/2 km s−1

where A is the atomic weight of the particle.

1In this context, the kinetic temperature.
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6.1.2 Boltzmann distribution

In TE at the temperature T , the excitation states of atoms are distributed over the bound levels according
to the Boltzmann excitation equation:

nn

n0
= gn

exp {−χn/kT }
U0

where
n0(= n jk) is the number density of atoms in ionization state j for element k;
nn(= ni jk) is the number density of atoms in excited state n of ionization state j for element k;
gn is the statistical weight associated with level n;
χn is the excitation energy of level n; and
Un is the partition function (cf. Appendix D.2).

6.1.3 Saha equation

Above the discrete bound eigenstates of an atom there exists a continuum of levels in which the electron
is unbound and has a non-zero kinetic energy The relative number of atoms and ions in successive states
of ionization is given by the Saha ionization equation,

n j+1ne

n j
=

(2πmkT )3/2

h3 2
U j+1

U j
exp {−χi/kT }

where:
U j+1,U j are partition functions, and
χi is the ionization potential.

Essentially, the Saha equation is just an extension of the Boltzmann equation to continuum states.
Again, the function on the right-hand side depends only on temperature.

Consider the process in which an atom is ionized from its ground level, resulting in an ion and a free
electron moving with velocity 3. The energy required for this process is χi + 1/2me3

2.

6.1.4 Kirchhoff’s law

If the matter component (emitters and absorbers) is in TE, then the ratio between the true absorption
and emission coefficients is a Planck function:

jν
kν

= Bν

Note that this is a property of the matter – not a property of the radiation field. It’s therefore valid only
for those processes that involve matter–matter interactions (even if a photon results; i.e., collisional
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processes, such as collisional excitation, free-free, etc.), but in principle, it may be applicable even if
radiation is decoupled from the gas, as long as the matter component has reached its statistical
equilibrium.

6.1.5 The specific intensity in TE

As radiation travels through a medium, the specific intensity varies due to emission, absorption, or
scattering of photons. The simplest situation occurs when the interactions are so strong that matter and
radiation are kept in mutual thermodynamical equilibrium in all points of the system.

The condition of perfect matter/radiation equilibrium can be obtained only in an ideal way. We need to
imagine an adiabatic cavity, with walls acting as perfect absorbers, containing matter in equilibrium at a
given temperature T . Since photons are continuously absorbed/emitted from the walls, not only the
energy distribution but also the number of photons inside the cavity will adjust toward their equilibrium
distributions. The number distribution of photons (bosons) is then given by the Planck distribution

dn
dν

=
8π
c3

ν2

exp
{

hν
kT

}
− 1

(6.1)

while the energy distribution is given by the black-body law:

uν = hν
dn
dν

=
8πhν3

c3

1

exp
{

hν
kT

}
− 1

. (6.2)

Now, with simple thermodynamical considerations it is possible to infer some general properties of the
radiation contained in the cavity. Imagine we will open a small hole in the cavity, so small that is not
going to alter the equilibrium inside, and then we put a second cavity in contact with the hole. The
second cavity has a different shape, different chemical composition, etc., but it has the same temperature
T of the first cavity (Fig.6.2). Between the two cavities we set a filter (made of optics, lenses, screens,
whatever) such that we allow the flow only for radiation with a certain frequency and a certain direction
but, at the same time, we avoid any alteration of thermal or mechanical nature to the system.

Because T is the same, the two cavities are in mutual equilibrium so that the net flow of energy between
the two cavities must be zero. Therefore, for definition of specific intensity, it follows that the value of
Iν flowing toward the other cavity must be the same on the two sides of the hole.

On the other hand, since we have chosen arbitrarily the position of the hole, we can conclude that

• under thermal equilibrium conditions, Iν is isotropic, independent on the shape of the container
and on the chemical composition of the matter contained inside the container.
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Figure 6.2: Thermodynamical Equilibrium between two cavities:

Therefore, for each given frequency the specific intensity at equilibrium must be a function of T only

Ieq
ν = f (T ). (6.3)

Now, due to isotropy, Iν = Jν. Since the mean intensity is related to the energy density through the
relation

Jν =
c

4π
uν , (6.4)

by substituting the equilibrium distribution eqtn. (6.1), eqtn. (6.2) gives

Ieq
ν = Jeq

ν =
2hν3

c2

1

exp
{

hν
kT

}
− 1

= Bν(T ) . (6.5)

• Therefore, if matter and radiation are in perfect thermal equilibrium then the specific intensity is
given by a Planck function: Iν = Bν.

The energy density contained in the adiabatic cavity is then

u =
1
c

∫ ∞

0
dν

∫
4π

Ieq
ν dΩ =

4π
c

∫
Bνdν =

4π
c

B(T ) (6.6)

where

B(T ) =

∫
Bνdν =

2π4k4

15c2h3 T 4 =
ac
4π

T 4 (6.7)

(where a is the radiation constant).
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Since radiation is isotropic, the net flux is zero at each point. Therefore, when dealing with physical
situations close to the complete equilibrium it is more convenient to define the flux as integrated over
one half only of the solid angle:

F+ =

∫ ∞

0
Bν dν

∫
2π

cos θ dΩ = πB(T ) = σT 4 (6.8)

where σ = ac/4 = 5.67 × 10−5 erg cm−3K−4. F+ = σT 4 is the flux that flows (in one direction only)
through an arbitrary imaginary surface contained inside a Planckian radiation field.

6.2 Local Thermodynamic Equilibrium

In TE the solution of the transfer problem is trivial: Iν = Bν. However, from the thermodynamic point of
view the matter and radiation are two distinct systems (although they interact).

In general, the characteristic length scale to reach equilibrium is smaller for the matter component; even
in presence of strong temperature and density gradients, particles can maintain a distribution very close
to equilibrium locally (e.g., particle velocity distributions are Maxwellian; energy levels are distributed
following Saha-Boltzmann, etc.)

The radiation field is generally more ‘far-reaching’. However, if Kirchhoff’s law is valid point by point
at the local value of temperature, then the system is in Local Thermal Equilibrium (LTE). In LTE:

1. the excitation and ionization states of the gas are given by Saha-Boltzmann,

2. the velocity distributions are Maxwellian, and

3. and the Kirchhoff law is valid,

all at the local temperature.

LTE provides a convenient simplification to compute the state of the gas; it implies that we can apply
the equilibrium relations at the local values of T (r) in spite of gradients that exist in the atmosphere.
The assumption of LTE should be applied with caution; it does not allow for coupling of the state of an
element of gas with that of an element nearby (except from what we can impose by assuming global
conservation equations, such as mass conservation or hydrostatic equilibrium).

Furthermore, be aware that, although Iν = Bν, this does not mean that an LTE model atmosphere emits a
Planck spectrum. This is because we should properly write

Iν(τν) = Bν(T (τν)).

We ‘see’ into a model (or real) atmosphere down to optical depth τν ' 1, but that corresponds to
different linear depths – hence different temperatures, and different radiation fields – depending on the
(frequency-dependent) opacity.
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6.2.1 LTE and detailed balance

At the microscopic level, LTE requires that processes involving matter are in detailed balance – i.e., the
rate at which any process occurs is exactly balanced by the rate at which its inverse occurs.

In general, processes that produce transitions fall in two categories: radiative and collisional.
–Collisional processes are in detailed balance when the velocity distributions are Maxwellian (as it is in
LTE).
–Processes that involve the radiation field (photoexcitation and photoionization) depend directly on the
radiation field, and will be in detailed balance only if the radiation field is Planckian.
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Section 7

Radiative Transfer

The major mode of energy transport through the surface layers of a star is via radiation; convective
transport rarely carries a large fraction of outward flux in a stellar photosphere (although it can
dominate in the interior, including the immediately subphotospheric layers).

7.1 The Equation of Radiative Transfer: First Principles
[reprises PHAS0018 material]

I
ν

I
ν

I
ν

  

+

τ(ν) τ(ν)

d

+dτ(ν)

S S + dS

S

τ(ν)=0

=0

Consider a beam of radiation from a distant point source (e.g., an unresolved star), passing through
some intervening material (e.g., interstellar gas). The intensity change as the radiation traverses an
element of gas of thickness ds is just the intensity added, less the intensity taken away (per unit volume,
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per unit frequency, per unit solid angle, per unit time):

dIν((((
(((( dA dν dω dt) = + jν ds((((

(((( dA dν dω dt)

− kν Iν ds((((
(((( dA dν dω dt)

i.e.,

dIν = ( jν − kν Iν) ds,

or

dIν
ds

= jν − kνIν, (7.1)

which is the simplest form of the Equation of Radiative Transfer (we will encounter other formulations
shortly).

Equation (7.1) expresses the intensity of radiation as a function of position. In astrophysics, we often
can’t establish exactly where the absorbers are; for example, in the case of an absorbing interstellar gas
cloud of given physical properties, the same absorption lines will appear in the spectrum of some
background star, regardless of where the cloud is along the line of sight. It’s therefore convenient to
divide both sides of eqtn. (7.1) by kν; then using our definition of optical depth (dτν = kν ds; eqtn. 4.6)
gives a more useful formulation,

dIν
dτν

=
jν
kν
− Iν

≡ S ν − Iν.
(7.2)

where S ν is called the source function. Evaluating the source function is the central problem in
constructing model stellar atmospheres – in principle, it requires evaluation of all sources of emission
and extinction, frequency by frequency, depth by depth in the atmosphere.

We will consider the source function further in §7.3 (and will obtain a formal solution for Iν in §7.4),
but first we take a small detour. . .

7.2 Photon mean free path

If we simply want to establish how far photons in a beam will travel before being extinguished, we can
ignore any ‘new’ photons – i.e., the emissivity. Setting jν = 0 (which is appropriate for interstellar
absorption lines, or headlights in fog) eqtn. (7.2) becomes

dIν/dτν = −Iν
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Just by inspection, the solution is simply

Iν = Iν(0) exp {−τν} . (7.3)

for incident intensity Iν(0).1 We can use this to establish the mean free path of a photon in a medium.

Evidently, as radiation travels through the absorbing medium, it is attenuated. The average distance over
which photons will travel before being absorbed (or scattered), expressed in terms of optical depth, is

〈τν〉 ≡

∫ ∞

0
τν pa(τν) dτν

/∫ ∞

0
pa(τν) dτν (7.4)

where pa(τν) dτν is the probability that a given photon will be absorbed in the interval [τν, τν + dτν].
The denominator of eqtn. (7.4) is the integral of this probability over all possible τν, and so must
evaluate to unity.2

If a photon is to be absorbed in the range [τν, τν + dτν], then necessarily it has not already been
absorbed in the interval [0, τν]. The probability that a photon in a beam is absorbed over the latter
interval is just the fractional change in intensity,3

pa(0, τν) =
I(0) − I(τν)

I(0)

= 1 −
I(τν)
I(0)

so the probability that a photon has not been absorbed in the interval [0, τν] is

1 − pa(0, τν) =
I(τν)
I(0)

,

= exp {−τν}

(from eqtn. 7.3).

The probability that a photon is absorbed over the interval [τν, τν + dτν] is again the fractional change in
intensity,

pa(τν, τν + dτν) =

∣∣∣∣∣ dIν
I(τν)

∣∣∣∣∣ ,
= dτν

(from eqtn. 7.2).

1In other contexts, versions of this result are known as Beer’s Law, or the Beer–Lambert Law, or the Lambert–Beer Law,
or the Beer–Lambert–Bouguer Law.

2The probability of anything, over all possible values of ‘anything’, is one.
3If the intensity drops by, say, 90%, then evidently there’s a 90% probability that some photon initially in the beam will

have been absorbed.
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The combined probability of ‘not absorbed in [0, τν]’ and ‘absorbed in [τν, τν + dτν]’ is the product of
the two separate probabilities; that is,

pa(τν) dτν = exp {−τν} × dτν.

Thus, from eqtn. (7.4),

〈τν〉 =

∫ ∞

0
τν exp {−τν} dτν

= 1

[noting that
∫

xe−x dx = −(1 + x)e−x]; that is, the photon mean free path corresponds an optical depth of
1.

A medium is said to be ‘optically thin’ if τν < 1, and ‘optically thick’ otherwise. Note that a medium
can be optically thin at one wavelength, but optically thick at another; e.g., brick walls are optically thin
to radio waves (we can listen to the radio indoors), but optically thick to visible light. In astrophysics,
the change from optically thin to optically thick can happen over quite small wavelength changes (e.g.,
a nebula might be optically thin in the visible continuum, but optically thick in a line).

Although the mean free photon path corresponds to an optical depth of one, fewer than half the photons
in a beam will travel that distance.4 As eqtn. (7.3) shows, unit optical depth results in a reduction in
intensity of a factor e−1, or ∼ 0.37; that is, rather less than half the photons survive passage through a
medium of unit optical depth unscathed.

7.3 Source function revisited

Since dτν = kν ds (eqtn. 4.6), the mean free path can be converted to (frequency-dependent) linear
distance `, if kν(s) is constant:

`

(
=

∆τν
kν

)
=

1
kν

(7.5)

Eqtn. (7.5) offers insight into the meaning of the source function, which is defined as the ratio of
emissivity to opacity (eqtn. 7.2). We see that

S ν

(
=

jν
kν

)
= jν `,

and hence that the source function has a straightforward physical interpretation: it is the the emissivity
generated over a photon mean free path (for a column of gas of unit cross-sectional area).

4The mean is biassed by the largest values, i.e., by the few photons that travel much further than the m.f.p. This is analogous
to a society in which a few people are paid much more than the average; most of the population then earn less than average.
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Source function in LTE

Recall that, for systems in (local) thermodynamic equilibrium, jν and kν are related through the
Kirchhoff relation for thermal emission/absorption,

jν = ka
νBν(T )

(where ka
ν explicitly identifies the opacity as arising through absorption). In this special (but important)

case we see that the source function is given by the Planck function:

S ν = Bν. (7.6)

In this case we can write eqtn. (7.1) as

dIν
ds

= jν − kνIν

= ka
νBν − ka

νIν

= ka
ν(Bν − Iν) (7.7)

Formally, S ν → Bν only when collisions dominate over radiative processes; however, in practice, in any
situation in which the opacity is very large, the source function can be well approximated by a
Planckian. When the opacity is high, photons can only travel short distances, and even if radiative
processes dominate over collisions, the local conditions have a dominant effect, and the local kinetic
temperature will control the level populations via the occasional collisional process.

Thus, generally, LTE (with S ν = Bν) may be a reasonable approximation if
(1) the density is high (so that collisions dominate and drive excitation, de-excitation, and ionization
levels towards Saha-Boltzmann), and
(2) if the opacity is large (so that photons can only travel short distances).

Scattering source function

Consider conditions under which the opacity arises solely through scattering; then the ‘emitted’ energy
equals the ‘absorbed’ energy, at every frequency:

dEν(e) = dEν(a);

i.e.,
∫

4π
jν dΩ =

∫
4π

ks
νIν dΩ,

or, if (as is commonly the case) the emission/absorption coefficients have no overall directionality,

jν

∫
4π

dΩ = ks
ν

∫
4π

Iν dΩ. (7.8)
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Rearranging gives

jν
ks
ν

=

∫
4π Iν dΩ∫

4π dΩ

=
1

4π

∫
4π

Iν dΩ;

i.e.,

S ν = Jν (7.9)

(using eqtns. 7.2 and 3.2 for the left- and right-hand terms, respectively).

Taking this limiting case, eqtn. (7.1) becomes

dIν
ds

= jν − kνIν

= ks
νJν − ks

νIν

= ks
ν(Jν − Iν) (7.10)

Generalized source function

If both scattering and true (‘thermal’) absorption contribute to the extinction, the source function is a
simple linear combination of eqtns. (7.6) and (7.9), weighted by the relative contributions of scattering
and absorption coefficients:

S ν =
ka
ν

ka
ν + ks

ν
Bν +

ks
ν

ka
ν + ks

ν
Jν

=
ka
νBν + ks

νJν
ka
ν + ks

ν
(7.11)

Combining eqtns. (7.7) and (7.10)

dIν
ds

= ka
ν(Bν − Iν) + ks

ν(Jν − Iν)

= (ka
ν + ks

ν)(S ν − Iν), = kν(S ν − Iν)

(cp. eqtn. 7.2), where the source function is given by eqtn. (7.11).
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Figure 7.1: Radiative transfer along a ray in the direction τ (and increasing s).

7.4 The ‘formal solution’ along a ray

We now return to consideration of the equation of radiative transfer, eqtn. (7.2), which is a simple
differential equation. We seek to obtain a more general solution than the trivial one given by eqtn. (7.3),
allowing for jν , 0.

Starting with

dIν
dτν

= S ν − Iν, (7.2)

we multiply both sides by exp{τν} to obtain

exp{τν}
dIν
dτν

+ exp{τν}Iν = exp{τν}S ν; that is,

d
dτν

(
Iν exp{τν}

)
= S ν exp{τν}, or

Iν exp{τν} =

∫ τν

0
S ν(tν) exp{tν} dtν + Iν(0)

(where tν is a dummy variable of integration and Iν(0) is a constant of integration whose value is evident
by considering τν = 0); then, dividing by exp{τν},

Iν(τν) =

∫ τν

0
S ν(tν) exp{−τν} exp{tν} dtν + Iν(0) exp{−τν}

=

∫ τν

0
S ν(tν) exp{−(τν − tν)} dtν + Iν(0) exp{−τν} (7.12)

7.4.1 Interpreting the formal solution

Equation (7.12) is called the formal solution for the specific intensity; it shows that
(i) the intensities generated at points tν suffer extinctions exp{−(τν − tν)} before being added to the
specific intensity Iν at the point τν; and
(ii) at the point τν along the ray s, the original intensity Iν(0) has suffered an extinction exp{−τν}
(cf. Fig. 7.1). In the special case that S ν is independent of τν the formal solution simplifies to

Iν = Iν(0) exp {−τν} + S ν
(
1 − exp {−τν}

)
.
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In practice, eqtn. (7.12) is only a formal solution, as it still requires that the source function be known.
Nonetheless, there are some simple cases in which it can be applied more or less directly; in particular,
we have seen that S ν = Bν(T ) in LTE, so in this case we ‘only’ require knowledge of the temperature
structure.

7.5 Radiative Transfer in Stellar Atmospheres

Having reviewed the principles in the simple case of radiative transfer along a ray, we turn to more
general circumstances, where we have to consider radiation coming not just from one direction, but
from arbitrary directions. The problem is now three-dimensional in principle; we could treat it in
cartesian (xyz) coördinates,5 but because a major application is in spherical objects (stars!), it’s
customary to use spherical polar coördinates.

I
ν

I
ν

+ dI
ν

ds

drdθr

ds

dθθ+

d

s

r

r

θ

S

Figure 7.2: Geometry used in radiative-transfer discussion, section 7.5 (cp. Fig. 3.1). The curved line is
intended to represent a spherical stellar surface; in the plane-parallel limit, this surface becomes a straight
line (dθ → 0, and the two radii shown become parallel; cp. Fig. 3.1).
The ‘outbound’ radiation has 0 < θ < π/2, with π/2 < θ < π corresponding to ‘inbound’ rays.

Again consider a beam of radiation travelling in direction s, at some angle θ to the radial direction in a
stellar atmosphere (Fig. 7.2). If we neglect the curvature of the atmosphere (the ‘plane-parallel
approximation’; dθ = 0) and any azimuthal dependence of the radiation field, then the intensity change
along this particular ray is

dIν(µ)
ds

= jν − kνIν(µ), (7.1)

5We could also treat the problem as time-dependent; but we won’t . . . A further complication that we won’t consider is
motion in the absorbing medium (which introduces a directional dependence in kν and jν); this directionality is important in
stellar winds, for example.

62



as before (where we explicitly identify the µ [= cos θ] dependence of the specific intensity; in principle,
other quantities may also have directional dependencies, but we will assume isotropy).

Overall, we’re most often interested in the radial transfer of radiative energy; we see from Fig. 7.2 that

dr = cos θ ds ≡ µds

so the transfer in the radial direction is described by

µ

kν

dIν(µ)
dr

=
jν
kν
− Iν(µ), = S ν(τν) − Iν(µ) (7.13)

(where we’ve divided through by kν); and since dτν = −kν dr (eqtn. 4.6, introducing a minus because
the sign convention in stellar-atmosphere work is such that optical depth increases with decreasing r)
we have

µ
dIν(µ)

dτν
= Iν(µ) − S ν(τν). (7.14)

This is the standard formulation of the equation of transfer in plane-parallel stellar atmospheres. It
differs from the previous formulation, eqtn. (7.2), simply by the projection factor µ = cos θ, allowing for
the optical depth to be measured at some angle θ to the radial direction (and by the change of sign,
which arises simply because of the change in the direction in which τ increases).

7.6 Generalized geometry, and spherical symmetry

[Omitted from lectures]

For arbitrary geometry we have to consider the full three-dimensional characterization of the radiation
field; that is

dIν
ds

=
∂Iν
∂r

dr
ds

+
∂Iν
∂θ

dθ
ds

+
∂Iν
∂φ

dφ
ds
, (7.15)

where r, θ, φ are our spherical polar coördinates. This is our most general formulation, but in the case of
stellar atmospheres we can often neglect the φ dependence; and we rewrite the θ term by noting not only
that

dr = cos θ ds ≡ µds

but also that

−r dθ = sin θ ds.

(The origin of the minus sign may be clarified by reference to Fig. 7.2; for increasing s we have
increasing r, but decreasing θ, so r dθ is negative for positive ds.)
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Using these expressions in eqtn. (7.15) gives a two-dimensional form,

dIν
ds

=
∂Iν
∂r

cos θ −
∂Iν
∂θ

sin θ
r

but this is also

= jν − kνIν (7.1)

so, dividing through by kν as usual,

cos θ
kν

∂Iν
∂r
−

sin θ
kνr

∂Iν
∂θ

=
jν
kν
− Iν

= S ν − Iν

Once again, it’s now useful to think of a point in the atmosphere in terms of the optical depth measured
radially inwards:

dτ = −kν dr,

which gives us the customary form of the equation of radiative transfer for use in extended stellar
atmospheres, for which the plane-parallel approximation fails:

sin θ
τν

∂Iν
∂θ
− µ

∂Iν
∂τν

= S ν − Iν. (7.16)

We recover our previous, plane-parallel, result if the atmosphere is very thin compared to the stellar
radius. In this case, the surface curvature shown in Fig. 7.2 becomes negligible, and the first term tends
to zero, recovering

µ
dIν
dτν

= Iν − S ν, (7.14)

which is our previous formulation of the equation of radiative transfer in plane-parallel stellar
atmospheres.

7.7 Plane-parallel atmospheres: formal solution

The difference between eqtns. (7.2) and (7.14) is simply the projection factor µ = cos θ (and a sign
change arising because of a change in the convention adopted for the direction of increasing τ).6 The
formal solution to eqtn. (7.14) follows exactly as before (Section 7.4, eqtn. 7.12), but with τν replaced
by −τν/ cos θ,= −τν/µ (where again the minus sign arises because we’re now using the convention that
τν increases inwards, not outwards), yielding

Iν(θ, τν) = −

∫ τν

c
S ν(tν) exp

{
−(tν − τν)

µ

}
dtν
µ
. (7.17)

6We recover eqtn. (7.2) simply by setting µ = −1 in eqtn. (7.14)
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Here the lower limit of integration c depends on the boundary conditions (and substitutes for the
‘constant of integration’ term in eqtn. (7.12). The obvious boundary to consider is the outer limit of the
atmosphere, which we define as being at τν = 0; at this point there is no radiation coming from ‘above’.7

r

θ

τ

τ=0

r=R

Then at some depth point τν, for the inwards radiation (π > θ > π/2; see figure above) we have

Iin
ν (θ, τν) = −

∫ τν

0
S ν(tν) exp

{
−(tν − τν)

µ

}
dtν
µ
. (7.18)

For ‘outbound’ radiation (0 < θ < π/2) we consider a tν-range up to∞ (that is, as deep into the
atmosphere as it’s possible to see incoming radiation reaching the point τν):

Iout
ν (θ, τν) = −

∫ τν

∞

S ν(tν) exp
{
−(tν − τν)

µ

}
dtν
µ

(7.19)

The total intensity at the depth point characterized by τν is just the sum of the inward and outward terms:

Iν(θ, τν) =

∫ ∞

τν

S ν(tν) exp
{
−(tν − τν)

µ

}
dtν
µ

−

∫ τν

0
S ν(tν) exp

{
−(tν − τν)

µ

}
dtν
µ

(7.20)

(where the limits of integration of the first, ‘outwards’, term have been reversed, with an accompanying
sign change). This is our formal solution for radiative transfer in a plane-parallel medium, analogous to
eqtn. (7.12).

7Other than from distant stars, etc. – which is negligible.
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Of special interest is the outwards (i.e., observable) radiation at τν = 0:

Iout
ν (θ, 0) =

∫ ∞

0
S ν(tν) exp

{
−tν
µ

}
dtν
µ

(7.21)

For most stars, we can’t measure the (angle-dependent) intensities, but in a few selected cases – most
obviously the Sun – we can measure the specific intensity as a function of θ. More usually, we can
measure only the flux from the distant stars – that is, the first moment of the radiation field.

7.7.1 Formal solutions for Jν, Fν, and Kν (the Schwarzschild-Milne Equations)

By using the formal solution for the specific intensity, it is now straightforward to derive the formal
solutions for the 0th, 1st and 2nd moments of the radiation field – the mean intensity Jν, the Eddington
flux Hν (or, almost equivalently, the physical flux Fν), and the K integral Kν. These are of importance in
calculating atmospheric structures and emergent spectra.

Recall that the mean intensity is defined as

Jν ≡
1

4π

∫
4π

Iν(θ, φ) dΩ =
1

4π

∫ 2π

0

∫ +1

−1
Iν(µ, φ) dµ dφ (3.2)

(where µ = cos θ, and the integral is the zeroth moment of the radiation field). If we again assume no
azimuthal dependence8 of Iν then

Jν =
1
2

∫ +1

−1
Iν(µ) dµ, =

1
2

[∫ +1

0
Iout
ν (µ) dµ +

∫ 0

−1
Iin
ν (µ) dµ

]
.

Using eqtns. (7.18) and (7.19), and assuming that S ν is isotropic9 (so we can take it out of the µ
integral), gives

Jν(τν) =
1
2

[∫ ∞

τν

S ν(tν)
∫ +1

0
exp

{
−(tν − τν)

µ

}
dµ
µ

dtν

−

∫ τν

0
S ν(tν)

∫ 0

−1
exp

{
−(tν − τν)

µ

}
dµ
µ

dtν

]
(7.22)

Setting w = 1/µ (so that dµ/µ = − dw/w) and x = tν − τν, the integral over dµ in the first term on the
right-hand side of eqtn. (7.22) can be written as∫ +1

0
exp

{
−(tν − τν)

µ

}
dµ
µ
→

∫ ∞

1
exp{−xw}

dw
w
,≡

∫ ∞

1

exp{−xw}
w1 dw.

The this has the form of an exponential integral, a standard form with well-studied properties:

En(x) =

∫ ∞

1
exp{(−xw)}/wn dw

8That is, we set
∫ 2π

0
Iν dφ = Iν

∫ 2π

0
dφ = 2πIν.

9This is a good assumption in static media.
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Figure 7.3: The exponential integral for n = 1, 2, 3, as a function of x(= tν − τν).

with n = 1 (cf. Fig. 7.3). Similarly, setting x = τν − tν and w = −1/µ, then the dµ integral in the second
term may also be written as∫ 0

−1
exp

{
−(tν − τν)

µ

}
dµ
µ
→ +

∫ ∞

1
exp{−xw}w

dw
w2 ,=

∫ ∞

1

exp{−xw}
w1 dw.

We can therefore write eqtn. (7.22) as

Jν(τν) =
1
2

[∫ ∞

τν

S ν(tν) E1(tν − τν) dtν +

∫ τν

0
S ν(tν) E1(τν − tν) dtν

]
. (7.23)

This is the formal solution we seek, and is analogous to eqtn. (7.20) for the intensity. It was first derived
by Karl Schwarzschild, and is therefore sometimes called ‘Schwarzschild’s equation’ in the context of
stellar atmospheres.10

τ
νν

t

τ
ν ν

t

τ
ν

● ●●

= 0

−

Surface

Interior

Over the given limits of integration in tν, tν − τν is always positive in the first term of eqtn. (7.23), and
τν − tν is always positive in the second term (see figure above). We can therefore write Schwarzschild’s

10‘Schwarzschild’s equation’ refers to a different form in discussions of planetary atmospheres.
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equation in slightly more compact form,

Jν(τν) =
1
2

∫ ∞

0
S ν(tν) E1(|tν − τν|) dtν.

This form is sufficiently common in stellar-atmosphere studies that it is further abbreviated using
operator notation,

Jν(τν) = Λτν[S ν(tν)], where

Λτν[ f (tν)] ≡
1
2

∫ ∞

0
f (tν) E1(|tν − τν|) dtν.

— Completely analogous arguments show that the flux,

Fν ≡

∫
Iν(θ, φ)µ dΩ =

∫ 2π

0

∫ +1

−1
Iν(µ) µ dµ dφ

(the first moment of the radiation field) may be written as11

Fν(τν) = 2π
[∫ ∞

τν

S ν(tν) E2(tν − τν) dtν −
∫ τν

0
S ν(tν) E2(τν − tν) dtν,

]
(7.24)

(
= Φτν[S ν(tν)] in operator notation

)
. The surface flux (at τν = 0) is therefore

Fν(0) = 2π
∫ ∞

0
S ν(tν)E2(tν) dtν; (7.25)

We see that it is the integral of the source function at every depth, multiplied by an extinction factor
E2(tν) relevant to that depth.

— Finally, the K integral (the second-order moment) is given by

Kν(τν) =
1
2

∫ +1

−1
Iν(µ)µ2 dµ

=
1
2

[∫ ∞

τν

S ν(tν) E3(tν − τν) dtν +

∫ τν

0
S ν(tν) E3(τν − tν) dtν

]
(7.26)

=
1
2

∫ ∞

0
S ν(tν) E3(|tν − τν|) dtν,

(
≡ Xτν[S ν(tν)] in operator notation

)
Equations (7.23), (7.24), and (7.26) – collectively, the Schwarzschild–Milne equations – are the formal
solutions for the first three moments of the specific intensity, i.e. they are the integral expression for
mean intensity, flux, and K integral (Jν, Fν,Kν). They are all depth-weighted averages of the source
function S ν, with the strongest contribution coming from the depth at which the argument of the
exponential integrals is zero (i.e., at t = τν).

11Note that event moments are represented by the sum of two integrals, and odd moments by the difference.
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Section 8

A simple model atmosphere
Radiative equilibrium, the grey atmosphere,
& the Eddington two-stream approximation

Classically, the model-atmosphere problem refers to the construction of mathematical models that
provide a description of the physical structure of a stellar atmosphere and of its emerging spectrum. In
principle, the formal solution of the equation of radiative transfer allows us to solve for the surface
intensity (and hence a model spectrum). However, recalling the transfer equation in the form

µ
dIν
dτν

=
µ

kν

dIν
dr

= S ν − Iν (7.13)

(appropriate to plane-parallel atmospheres) we see that, in order to solve for Iν in practice, we need to
know something about S ν and kν (and both are functions of temperature, so we need to know the run of
temperature through the atmosphere).

This is a problem of, potentially, enormous complexity: the occupation numbers depend on the
radiation field, which depends on the occupation numbers; energy transport may be by radiation and
convection; there may be a dynamical or time-dependent component of the atmosphere; the local
effective temperature and gravity may vary over the surface (due to rotation, or a binary companion). In
its most general formulation, the problem remains beyond practical solution at present (although
increasing computational power is gradually allowing more and more approximations to be relaxed, and
more and more physics to be incorporated into the models), and it is necessary to make several
simplifications, creating models that are idealized to greater or lesser extent. In this section, we’ll see
how the condition of radiative equilibrium allows us to make progress with the temperature structure,
and we’ll use the grey atmosphere as the simplest approach to the opacity. Together, they allow a simple
solution for the source function.
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8.1 Basic assumptions

When using idealized models (as we shall do), it is crucial to understand in depth the restrictions that
we are imposing: in this way can define the problem, understand the results in the context of the
assumptions, and appreciate issues that remain to be explored.

The main simplifying assumptions that we will adopt in order to build a ‘classical’ model atmosphere
relate to:

8.1.1 Geometry

We assume that the atmosphere is made of plane-parallel, homogeneous layers.
– The plane-parallel (‘semi-infinite’) atmosphere is a good approximation when the thickness of the
atmosphere is small compared to the stellar radius.
– Homogeneity makes the problem one-dimensional (in the sense that all variables are functions only of
depth). While this is a great simplification, we lose the ability to model many interesting phenomena,
but a homogeneous, 1-D model should give us some kind of spatially averaged information.

We should note that for cool stars (F-type and later), many inhomogeneities arise through
hydrodynamic phenomena in the convection zone; therefore we expect homogeneous models to better
approximate stars with radiative envelopes. On the other hand, Ap stars (for example) show large
gradients in the physical quantities, possibly because of strong magnetic fields, so in this case a
plane-parallel homogeneous model is probably not a good approximation.

8.1.2 Steady state

We assume that the atmosphere is
– In steady state (i.e., we neglect all time-dependent phenomena such as pulsations, shocks etc.), and
– Static (we assume that level populations are constant in time and given by statistical equilibrium
equations, and that hydrostatic equilibrium applies [no stellar winds]).

8.1.3 Momentum and energy balance

We assume hydrostatic equilibrium (momentum balance) and radiative equilibrium (energy balance).
The former assumption implies that the pressure gradient balances the gravitational forces and is
consistent with a static atmosphere; the latter implies that the energy-integrated flux is conserved along
the x-coördinate which defines our ‘one dimensional’ directionality.

In summary, we will construct 1-D (plane-parallel), static models in radiative and hydrostatic
equilibrium.
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8.2 Flux constancy and radiative equilibrium

There are no important nett sources or sinks of energy in the envelope and atmosphere; the total
(radiative + convective + conductive) energy flux generated in the core is simply transported outward,
giving rise to the condition of flux constancy. Formally, the divergence of the total energy flux is zero, or
more simply

dF (r)
dr

= 0; (8.1)

that is, F (r), the total energy flux through some sphere of radius r, is a constant – say, F0.

At the photosphere, more or less by definition, radiation escapes readily, suggesting at once that this it is
the principal means of energy transport (if only because it can carry away energy much faster than any
other energy-loss process). K. Schwarzschild formally demonstrated this to be the case in practice (even
for a star like the Sun, in which convective energy transport in the immediately sub-photospheric layers
is important).

If we consider those regions in which the energy transport is dominated by radiation (such as the stellar
atmosphere), then

F (r)
4πr2 '

∫ ∞

0
Fν(r)dν = a constant, F0

(
= σT 4

eff

)
(8.2)

where the formal solution for the radiative flux per unit area, Fν, is given by eqtn. (7.24). If eqtn. (8.2) is
valid throughout the atmosphere, then the atmosphere is said to be in radiative equilibrium. Radiative
equilibrium is thus a special case of flux constancy (where the ‘flux’ in ‘flux constancy’ means the total
energy flux, not just the radiative energy flux).

The (radiative) flux constant is related to the effective temperature through F0 = σT 4
eff

(eqtn. C.7).
When we construct a model atmosphere under the condition of radiative equilibrium, Teff may therefore
be selected as one of the fundamental parameters characterizing the model. However, we need to be
able to express radiative equilibrium in terms of quantitities that enter directly into the radiative transfer
we’ve previously discussed. This can be formulated in a number of ways, as pioneered by E.A. Milne.

8.2.1 Radiative equilibrium: Milne’s formulation – 1

We start by taking the zeroth moment of the transfer equation in the form

µ
dIν
dr

= kνS ν − kνIν; (7.13)
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that is, multiply both sides by µ0 (= 1) and integrate over solid angle, assuming that kν and S ν are
isotropic (i.e., locally independent of direction):

d
dr

∫
4π

Iν(µ, φ)µ dΩ = kνS ν

∫
4π

dΩ − kν

∫
4π

Iν(µ, φ) dΩ, i.e.,

d
dr

∫ 2π

0

∫ +1

−1
Iν(µ, φ)µ dµdφ = kνS ν

∫ 2π

0

∫ +1

−1
dµdφ − kν

∫ 2π

0

∫ +1

−1
Iν(µ, φ) dµdφ

or, if there is no φ dependence of Iν,

d
dr

[
2π

∫ +1

−1
Iν(µ)µ dµ

]
= 4πkνS ν − 2πkν

∫ +1

−1
Iν(µ) dµ. (8.3)

The term in square brackets is 4π times the first moment of the radiation field – i.e., it is the flux Fν (4π
times Hν; §3.4). Similarly, the second integral is twice Jν (the mean intensity, or zeroth moment of the
radiation field); that is,

dFν

dr
= 4πkνS ν − 4πkνJν. (8.4)

We’re concerned with the total radiative energy flux (and not with the frequency dependence), so we
should integrate over frequency:

d
dr

∫ ∞

0
Fν dν = 4π

∫ ∞

0
kνS ν dν − 4π

∫ ∞

0
kνJν dν.

Applying the condition of radiative equilibrium, the left-hand side is equal to zero (eqtns. 8.1, 8.2); thus∫ ∞

0
kνJν dν =

∫ ∞

0
kνS ν dν. (8.5)

This is our first way of formally expressing the condition of radiative equilibrium. It’s important to be
clear that it does not imply that Jν = S ν, frequency by frequency; only the integrated quantities are
equal.

8.2.2 Radiative equilibrium: Milne’s formulation – 2

To obtain a second formulation of interest, we again start from the equation of radiative transfer in the
form of eqtn. (7.13), but now multiply both sides by µ1(= cos θ). As in the derivation of eqtn. (8.5), we
then perform an integral over solid angle (assuming that kν and S ν are isotropic and that there is no φ
dependence of Iν; cp. eqtn. 8.3):

d
dr

∫
4π

Iν(µ)µ2 dΩ = kν

∫
4π

S νµdΩ − kν

∫
4π

Iν(µ)µ dΩ (8.6)

⇒ 2
dKν

dr
= kνS ν

∫ +1

−1
µ dµ − 2kνHν

⇒
dKν

dτν
=

Fν

4π
(using dτν = −kνdr) (8.7)
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where Kν is the second moment of the radiation field. As before, we integrate over frequency to get the
total radiative flux:∫ ∞

0

dKν

dτν
dν =

∫ ∞

0

Fν

4π
dν

or, in radiative equilibrium (eqtn. 8.2),∫ ∞

0

dKν

dτν
dν =

F0

4π
, ≡ H0 (8.8)

where H0 is the (frequency-integrated) Eddington flux.

This is another useful way of formulating radiative equilibrium. Of course, eqtns. (8.5) and (8.8) are not
independent; they are just different ways to express the same condition (radiative equilibrium, 'flux
conservation), which are useful under different circumstances.

8.2.3 Radiative equilibrium: Milne’s formulation – 3 [Not for lectures]

We obtained the first and second Milne equations essentially by taking the zeroth and first moments of
the equation of radiative transfer in a plane-parallel medium. A third equation can be obtained by taking
the second moment – multiply both sides eqtn. (7.13) by µ2, and integrate over solid angle. By using the
formal solution for Kν, eqtn. (7.26), we obtain∫ ∞

0

d
dτν

[
1
2

∫ ∞

τν

S ν(tν) E3(tν − τν) dtν +
1
2

∫ τν

0
S ν(tν) E3(τν − tν) dtν

]
dν =

F0

4π

This relatively unwieldy form is Milne’s third equation expressing radiative equilibrium.

8.3 The grey atmosphere

The case in which the opacity kν is independent of frequency – the ‘grey case’ – merits special
consideration because of its amenability to semi-analytical solutions. However, the only important
source of opacity that is truly grey is electron scattering, so the grey atmosphere is generally only useful
for approximate or qualitative results; but it can nonetheless give useful physical insights that may be
lacking in entirely numerical approaches.

Under the grey assumption, then integrating the transfer equation over frequency, and setting
kν = k(, f (ν)), we obtain:

µ
dI
dr

= kS − kI, or µ
dI
dτ

= I − S (8.9)
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where I =
∫ ∞

0 Iν(µ) dν and S =
∫ ∞

0 S ν dν are the frequency-integrated specific intensity and the
frequency-integrated source term, respectively, and τ is the optical depth (now independent of
frequency).

This is an enormous simplication: the total specific intensity I will be known for each ray if we solve
just one equation, instead of an effectively infinite set (one for each frequency). This simplification
extends to the equations of radiative equilibrium; the simplified forms of eqtns. (8.2), (8.5) and (8.8) are

F = F0 (8.10⇐ 8.2)

J = S (8.11⇐ 8.5)
dK
dτ

=
F0

4π
(8.12⇐ 8.8)

(where F =
∫ ∞

0 Fν(µ) dν; K =
∫ ∞

0 Kν dν; and the subscript ν has been dropped from the optical depth –
i.e., τν → τ, with no frequency dependence).

8.3.1 Source function: the Eddington two-stream approximation

In order to find a solution for the transfer equation in the grey case, note that, under the constraint of
radiative equilibrium, the integral quantities J and S are the same (eqtn. 8.11⇐ 8.5). In general,
solving the transfer equation means having to find a solution for S ; but in this simplified case we need
‘only’ to find a solution for J.

To do this, we begin by integrating eqtn. (8.12⇐ 8.8),

K(τ) =
F0

4π
τ + const. (8.13)

A solution can be obtained if both K and F0 can be expressed in terms of the intensity. In order to
progress, we make use of the Eddington (1926) ‘two-stream’ approximation. Under this approximation,
the specific intensity is characterized by only two angle-independent terms, one propagating inward and
one outward:

I(θ, τ) = Iout(τ) for θ ≤ π/2 (+1 ≤ µ ≤ 0)

I(θ, τ) = Iin(τ) for θ > π/2 (0 < µ ≤ −1);

that is, under the two-stream approximation, at some given value of τ the specific intensity is constant in
each hemisphere.

We can now evaluate the zeroth, first, and second moments of the radiation field. The mean intensity at
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depth τ may be written as

J(τ) ≡
∫

I(θ, φ, τ)
dΩ

4π
=

1
4π

∫ 2π

0

∫ +1

−1
I(µ, φ, τ) dµ dφ

=
1
2

∫ +1

0
I(µ, τ) dµ +

1
2

∫ 0

−1
I(µ, τ) dµ (zeroth-order moment, assuming azimuthal symmetry)

=
1
2

Iout(τ)
∫ +1

0
dµ +

1
2

Iin(τ)
∫ 0

−1
dµ

=
1
2

[
Iout(τ) + Iin(τ)

]
(8.14)

(that is, the mean intensity is just the average of intensities in the two hemispheres – unsurprisingly!).
Similarly, the physical flux is given by

F(τ) = 4πH =

∫
I(θ, φ, τ)µ dΩ

= 2π
∫ +1

0
I(µ, τ)µ dµ + 2π

∫ 0

−1
I(µ, τ)µ dµ (first-order moment ×4π)

= π
[
Iout(τ) − Iin(τ)

]
(8.15)

(which again matches common sense: the outwards flux of radiation should have something to do with
the difference between the ‘upwards’ and ‘downwards’ intensities). Finally, the K integral (which we
need in order to tackle eqtn. 8.13) is

K(τ) =

∫
I(θ, φ, τ)µ2 dΩ

4π
(second-order moment)

=
1
6

[
Iout(τ) + Iin(τ)

]
=

J(τ)
3

(from eq. 8.14). (8.16)

At the surface, τ→ 0 and Iin → 0, so

J(0) =
1
2

Iout(0); F(0) = πIout(0); K(0) =
1
6

Iout(0),

→J(0) =
F(0)
2π
≡

F0

2π
; (8.17)

K(0) =
F(0)
6π
≡

F0

6π

(in radiative equilibrium), which gives us the constant of integration in eqtn. (8.13):

K(τ) =
F0

4π
τ +

F0

6π
,=

J(τ)
3

(from eqtn. 8.16) (8.18)

whence

J(τ) =
3F0

4π

(
τ +

2
3

)
,= S (τ) (from eqtn. 8.11⇐ 8.5). (8.19)
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This gives us the required source function for a grey atmosphere (eqtn. 8.11⇐ 8.5), under the condition
of radiative equilibrium (eqtn. 8.12⇐ 8.8) in the Eddington (two-stream) approximation
(eqtns. 8.14–8.16). Note the important result that, in this case, S (τ) is a linear function of optical depth
(i.e., S = a + bτ) – note also that this is not true in general!

A more rigorous treatment of the grey problem, relaxing the Eddington two-stream approximation in
favour of a proper angle integration (Chandrasekhar 1957), gives only a slightly different result:

J(τ) =
3F0

4π
[
τ + q(τ)

]
(8.20)

where q(τ), called the Hopf function, is a slowly varying function which ranges from 0.577 at τ = 0 to
0.710 as τ→ ∞ (compare with the factor 2/3 ' 0.67 appearing in the two-stream solution).

8.3.2 Temperature structure

We have seen that, in radiative equilibrium,∫ ∞

0
kνJν dν =

∫ ∞

0
kνS ν dν, (8.5)

so for grey opacities and LTE (S ν = Bν) we have∫ ∞

0
Jν dν =

∫ ∞

0
Bν dν,

= σT 4/π.

That is, the frequency-integrated mean intensity at some optical depth τ is

J(τ) =
σ

π
T 4(τ)

Comparing this to eqtn. (8.19), and using F0 = σT 4
eff

, gives us the temperature profile of the grey
atmosphere:

T 4(τ) =
3
4

(
τ +

2
3

)
T 4

eff . (8.21)

[Relaxing the two-stream again gives only a slightly different result:

T (τ) =

{
3
4

[
τ + q(τ)

]}1/4

Teff (8.22)

where q(τ) is the Hopf function.]

Note that

• larger τ corresponds to larger T – temperature increases with increasing depth in the atmosphere
(although Teff is constant, T is not!);
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τ = 1 surface

µ
2

µ1

To observer

Atmosphere}

Figure 8.1: Left, white-light image of the Sun, showing limb darkening; right, limb-darkening geometry.
The “τ = 1 surface” illustrates the locus of constant line of sight optical depth; the corresponding radial
optical depth is smaller at the limb than at the centre of the disk, so we see deeper into the atmosphere at
the centre.
[The angles are labelled with ‘µ’ (= cos θ), so numerically µ1 > µ2.]

• T (τ) = Teff at τ = 2/3;1

• T (τ) scales linearly with the effective temperature Teff (for the grey atmosphere).

It’s important to recognize that a change in temperature with depth isn’t inconsistent with radiative
equilibrium; although the mean intensity of radiation, J, increases with depth (reflected in the increasing
temperature), the radiative flux, F (the nett outwards-directed component of the intensity), is constant.
Physically, the ‘throttling’ of the outward flow of radiation depends on the opacity – which is why we
use optical depth (rather than physical depth) as a measure of radial location in the atmosphere.

8.4 Limb darkening and the Eddington–Barbier Relation

If we observe a spatially resolved star, like the Sun (Fig. 8.1), then at every point on the disk we see
down to a line-of-sight optical depth of τ ' 1. However, this corresponds to different radial physical
depths – we see more deeply into the atmosphere at the centre of the disk than we do at the edge. As
demonstrated in §8.3.2, deeper means hotter (hence higher surface brightness), so the limb (edge) of the
star appears darker then the centre – an effect known as limb darkening.

We know that in the Eddington approximation, the source function is a linear function of optical depth
for the grey atmosphere (eqtn. 8.19). We can make a modest generalization of this specific result by

1Stars with significantly extended atmospheres may have ill-defined linear radii. Based on the grey-atmosphere result, ‘the’
(wavelength-dependent!) radius – and hence Teff – is conventionally defined at τ = 2/3.
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taking the first two terms in a Taylor expansion of S ν around τν = 0, thereby also approximating the
frequency-dependent source function as a linear function of optical depth:

S ν(τν) = aν + bντν, (8.23)

where τν is, as usual, the optical depth measured radially inwards. The specific intensity at the surface2

(radial optical depth τν = 0) is

Iout
ν (µ, 0) =

∫ ∞

0
S ν exp

{
−τν
µ

}
dτν
µ

(7.21)

or, setting τν/µ = x,

Iν(µ, 0) =

∫ ∞

0
S ν exp {−x} dx,

= aν

∫ ∞

0
exp {−x} dx + bνµ

∫ ∞

0
x exp {−x} dx

(using eqtn. 8.23). The integrals are both of the standard form∫ ∞

0
xn exp {−x} dx,

(with n = 0, 1) which evaluates to n! Thus, recalling that 0! = 1,

Iν(µ, 0) = aν + bνµ. (8.24)

Equation (8.24) shows that the intensity varies from Iν ' aν + bν at the centre of the stellar disk to ∼ aν
at the limb;3 that is, the limb is darkened relative to the centre (for +ve bν). Limb darkening always
occurs when the source function decreases outward with decreasing optical depth τν; the consequence is
that if we look toward the limb of a star we see systematically higher (and cooler) layers, which are less
and less bright.

This is schematically illustrated in Fig. 8.1. The penetration depth of our line of sight to unit effective
line of sight optical depth is smaller at larger θ. When we look toward θ = π/2 we see layers closer to
the top of the atmosphere, where the radial optical depth τν is smaller; but here S ν is smaller, giving rise
to limb darkening.

Comparing eqtn. (8.24) with (8.23), we see that the emergent (τ = 0) intensity at some angle µ is

Iν(µ, 0) ' S ν(τν = µ);

2This is the intensity emerging at τ = 0, but of course this emergent radiation originates over a range of optical depths.
3In practical applications, eqtn. (8.24) is often cast in the form I(µ)/I(1) = 1 − u(1 − µ), where the linear limb-darkening

coefficient is u = b/(a+b). Limb darkening should not be confused with Lambert’s cosine law, which is quite separate (applying
to reflecting, not emitting, bodies).
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that is, the emergent intensity corresponds to the source function at τ = 1 along the line of sight. This
results is known as the Eddington–Barbier relation.4 For a resolved stellar disk, this means that
mapping Iν(0) at different angles across the disk allows the source function S ν (and hence the
temperature stratification) to be determined observationally as a function of optical depth, at least over
the range τ = 0:1.

4Some authors distinguish between the ‘Eddington–Barbier relation’, which is an exact result for linear source functions,
and the ‘Eddington–Barbier approximation’ for more general cases.
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Section 9

Constructing non-grey model atmospheres

In this section we’ll consider how to construct more-realistic models, discarding the (rather poor) grey
approximation. Recall that by ‘constructing a model atmosphere’ we mean computing a self-consistent
run of physical quantities as a function of depth in the atmosphere. Those ‘physical quantities’ describe
the state of the matter (e.g., temperature, pressure) and the radiation, normally under some simplifying
assumptions; and ‘depth’ is, in practice, the Rosseland mean optical depth, τ.1 The “simplifying
assumptions” may include hydrostatic equilibrium, time independence, plane-parallel geometry, and/or
LTE; although state-of-the-art computer codes may relax any or all of those approximations, we’ll
retain them for the time being.

9.1 Construction of a LTE model atmosphere: basic equations and
approximate (iterative) method of solution

9.1.1 Key equations

We begin by reviewing six basic equations which, given our assumptions, are sufficient, in principle, to
compute a model atmosphere:

1. the definition of the frequency-dependent optical depth, relating it to physical depth:

dτν = −kν ds = −κνρ ds (4.6)

2. hydrostatic equilibrium (an assumption in this development):

dP
dτν

=
g
κν

(2.3)

1Or the optical depth at some reference frequency of choice; the requirement is only for some unique correspondence
between linear depth and ‘the’ optical depth.
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3. the equation of state; e.g.,

P = nkT =
ρkT
µmH

(2.4)

4. the formal solution for the radiation field (i.e., the integral solution of the radiative transfer
problem expressed in terms of the mean intensity Jν ); for plane-parallel geometry, in shorthand
form,

Jν(τν) =
1
2

∫ ∞

0
S ν(tν) E1|τν − t| dtν, ≡ Λ[Bν] in LTE (7.23)

5. radiative equilibrium (implying flux conservation)∫ ∞

0
kνJν dν =

∫ ∞

0
kνS ν dν (8.5)

6. the radiative flux per unit area, F0, expressed in terms of the effective temperature, Teff:

F0 = σT 4
eff . (8.2)

Broadly speaking, the first three equations (let’s call them ‘Set 1’) describe quantities related to the
matter (P, ρ, τν), while the last three equations (let’s call them ‘Set 2’) give the properties related to the
radiation field (T , Jν, F).

These two sets of equations are not independent: they are strongly coupled to each other, due to the
strong coupling between matter and radiation. However, there is no direct simultaneous solution of the
whole system of six equations. For this reason, it’s necessary to seek a solution through an iterative
scheme.

9.1.2 Solution philosophy

In order to solve the complete system of six equations we need to specify three parameters (not six,
because the equations are coupled, not independent). The parameters which normally chosen to
characterize a plane-paralle model atmosphere are the effective temperature (Teff), the surface gravity2

(g), and the chemical composition.3 The first two are related to the fundamental stellar parameters
mass, radius, and luminosity, through

T 4
eff =

L
σ4πR2 g =

GM
R2 .

2In practice, ‘the’ gravity is customarily expressed as log(g), the base-10 logarithm of the surface gravity, in cgs units [i.e.,
cm s−2].

3Not really a single free parameter, of course, though it’s often reasonable to start by assuming solar abundances, perhaps
with a global scaling to the metallicity.
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Figure 9.1: Model atmospheres are necessarily evaluated on a fixed grid of points distributed vertically.

For most stars (certainly for main-sequence stars), the atmosphere is thin compared to the stellar radius,
and has negligible mass compared to the total mass. Consequently, it’s normally safe to assume that the
gravity is constant through the atmosphere.

We need to solve the equations for every depth point in the atmosphere. Because the various
integrations (for example) need to be conducted numerically, we necessarily represent the atmosphere
by a finite number of depth points in order to do this. For a plane-parallel, hydrostatic atmosphere
model, typically ∼ 102 depth points would be chosen, at more or less uniform steps in log(τ), over a
range from very optically thin to very optically thick (say, log(τ) ' −6:+6; Fig. 9.1).

Conceptually, we then proceed as follows:

Step 0:

Specify Teff , log10(g), and abundances that define the model.

Step 1:

Make a first guess at the temperature profile, T (τ), and the opacities (e.g., from a grey-atmosphere
model; or from a previously calculated model with similar parameters).
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Step 2:

(a) Using the temperature profile, integrate the equation of hydrostatic equilibrium, to get pressure
(hence density) as a function of depth.

[Some small pressure can be assigned to the outermost layer, and the equation of hydrostatic
equilibrium then integrated inwards.]

(b) Knowing T (τ), P(τ) (hence ρ(τ)), update the opacities (from lookup tables; or by using
Saha-Boltzmann, or statistical-equilibrium calculations, to get level populations).

(c) conduct a formal solution of the radiation field (at each depth in the atmosphere), eqtn. (7.23).

Step 3:

The initial guess for temperature given in step 1 is (very!) unlikely to be correct; hence the computed
radiation field will surely not meet the condition of flux conservation (or equivalently, given our set of
assumptions, radiative equilibrium).

We therefore need to compute some correction to the radiation field (i.e., for the temperature profile).
We apply this correction to update our temperature profile, and go back to Step 2. We continue in this
manner until we arrive at a self-consistent solution, with a radiation field that satisfies radiative
equilibrium throughout the atmosphere.

Several such iterative temperature-correction schemes exist; we’ll review two.

9.2 Λ iteration

Named for the formal solution for the mean intensity, Jν(τ) = Λτ[S ν(t)], this is the simplest
temperature-correction scheme. Although it is useful for illustrating the principles of such schemes, we
should note from the outset that it is very inefficient in practice (and consequently not used in real-world
codes).

Recall that the condition of radiative equilibrium led us to∫ ∞

0
kνJν dν =

∫ ∞

0
kνS ν dν. (8.5)

This is true at every depth in the atmosphere; i.e.,∫ ∞

0
kνJν(τ) dν =

∫ ∞

0
kνS ν(τ) dν. (9.1)

for any τ. This raises two points requiring clarification:
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1. Remember, eqtns. (8.5/9.1) do not imply that Jν = S ν – we need to evaluate Jν(τ) by integrating
S ν(t) over a range of directions and optical depths (eqtn. 7.23).

2. The source function (and the mean intensity) are functions of temperature, which is a function of
physical depth in the atmosphere; e.g., in LTE S ν(τ) = Bν(T (τ)). In the context of a
temperature-correction scheme, we therefore require that the optical depth identified in eqtn. (9.1)
correspond to a particular physical depth.4 Conceptually, this is readily accomplished by thinking
of τ as, say, the Rosseland mean optical depth (although other options are available; e.g.,
choosing some specific reference frequency at which to evaluate τν).

For some initial guess at the temperature at some optical depth, T1(τ), radiative equilibrium will not be
satisfied, because the temperature used to evaluate the source function, S ν, will not be not correct. To
improve that guess, we can update the temperature employed on the right-hand side of eqtn. (9.1) by
using a first-order Taylor expansion;5 that is, we set∫ ∞

0
kνS ν[T2(τ)] dν =

∫ ∞

0
kνS ν[T1(τ)] dν +

∂

∂T

∫ ∞

0
kνS ν[T1(τ)] dν × [T2(τ) − T1(τ)] (+ higher-order terms)

≡

∫ ∞

0
kνS ν[T1(τ)] dν +

∫ ∞

0
kν
∂S ν[T1(τ)]

∂T
dν × δT (τ)

(where T2(τ) is our update from T1(τ) at depth τ; and we have assumed that kν can be adequately
evaluated at the current temperature estimate, T1). We can now write eqtn. (9.1) as∫ ∞

0
kνJν(τ) dν =

∫ ∞

0
kνS ν[T1(τ)]dν + δT (τ)

∫ ∞

0
kν
∂S ν[T1(τ)]

∂T
dν

from which δT (τ), the required correction to the current guess at the temperature at depth τ, is

δT (τ) =

∫ ∞
0 kν [Jν(τ) − S ν[T1(τ)]] dν∫ ∞

0 kν
∂S ν

∂T dν
(9.2)

That is, in the framework of the iterative process outlined in Section 9.1.2 we can correct/update the
initial temperature at (every) depth τ by setting T2 = T1 + δT ; go back to Step 2; and repeat the process,
until convergence is reached. In LTE, S ν = Bν, and the source function and its derivative with respect to
T can be evaluated analytically; otherwise, this would have to be done numerically.

Because Jν = Λ[S ν], this iterative process is conventionally referred to as as ‘Λ iteration’. It is
conceptually simple, but has significant disadvantages:

1. The method gives suitable corrections at the stellar surface, but in the deeper layers the photon
mean free path is short, and both Jν and S ν tend to Bν. Consequently, the numerator in eqtn. (9.2)
vanishes at all frequencies, and the correction δT tends to zero as the optical depth tends to
infinity. As a result, convergence at depth is indefinitely slow.

4Not true in general: eqtn. (4.6), dτν = −kν ds, tells us that a fixed optical depth generally occurs at different physical
depths at different frequencies, because of the frequency dependence of the opacity.

5Recall f (x) about a: f (x) ' f (a) + f ′(a)(x − a). . .
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2. A major weakness of Λ iteration is that it is a local method; that is, it takes no account of the
effect that the correction δT (τ) at depth τ has on the mean intensity Jν(τ′) in some adjacent layer
at depth τ′. A better method would be sensitive to the global status of the atmosphere; that is, we
would prefer to use a correction in an integral form.

3. Furthermore, because radiative equilibrium is enforced locally (rather than globally), the method
can lead to dF/dτ = 0, as required, but not at the desired value for the flux F0. More generally,
the method can stabilize at an incorrect solution – a very bad numerical property.

As a result of these limitations, Λ iteration is not used as a practical solution method – although often
wheeled out as a simple demonstration of how to solve an atmospheric structure in principle, it is also a
good example of how not to do it in practice. However, towards the end of the 20th century, it was
realised that its convergence properties could be dramatically improved through the introduction of
modified, ‘accelerated’ or ‘approximate’, lambda operators. These so-called ALI methods are now a
mainstay of modern stellar-atmosphere computer programs.

Nevertheless, other techniques remain in use, and are (arguably) easier to demonstrate, including (e.g.)
Avrett-Krook and Unsöld–Lucy iteration; we’ll review the latter as a practical alternative to simple Λ

iteration.

9.3 Unsöld–Lucy iteration

The Unsöld–Lucy method incorporates constraints on both the absolute value of the flux and its (lack
of) depth dependence. With minor modifications, this method is embodied in the ‘state of the art’
modelling code PHOENIX.

Although we want to relax the grey-atmosphere approximation, it’s still convenient to avoid the full
frequency dependence of opacities by defining several frequency-integrated, flux-weighted forms
(where all quantities with subscripts are to be understood to be functions of [optical] depth in the
atmosphere). This is tolerable because at this stage we’re not really concerned with the
frequency-dependent spectrum, but just the overall radiative energy transport. We define the following:

Planck mean opacity: kP =

∫ ∞
0 ka

νBν dν∫ ∞
0 Bν dν

, ≡

∫ ∞
0 ka

νBν dν

B
;

Eddington-flux mean opacity: kH =

∫ ∞
0 kνHν dν∫ ∞

0 Hν dν
, ≡

∫ ∞
0 kνHν dν

H
;

intensity mean opacity: kJ =

∫ ∞
0 ka

νJν dν∫ ∞
0 Jν dν

, ≡

∫ ∞
0 ka

νJν dν

J
,

with corresponding (frequency-independent) optical-depth increments dτP, dτH, and dτJ (= −kP dr,
−kH dr, and −kJ dr), where kν = ka + ks

ν is the sum of ‘true’ and scattering opacities (cf. eqtn. 7.11).
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9.3.1 Zeroth moment

Starting from the zeroth moment of the transfer equation (integrating the transfer equation over solid
angle, as in our discussion of Milne’s first equation; Section 8.2.1) we previously obtained the flux
derivative in the form

dHν(τν)
dr

= kνS ν(τν) − kνJν(τν), (8.4)

(recalling that the Eddington flux is Hν = Fν/4π). Using eqtn. (7.11) for S ν and integrating over
frequency, then at some (frequency-independent) depth τP in the atmosphere∫ ∞

0

dHν(τP)
dr

dν =

∫ ∞

0
ka
νBν (T (τP)) dν −

∫ ∞

0
ka
νJν(τP) dν.

Using the intensity- and Planck-mean volume opacities on the right-hand side this becomes

dH(τP)
dr

= kPB (T (τP)) − kJJ(τP).

Dividing both sides by kP and rearranging we obtain

B (T (τP)) =
kJ

kP
J(τP) −

dH(τP)
dτP

. (9.3)

In principle, eqtn. (9.3) allows us to compute the frequency-integrated Planck source function at depth
τP; or, essentially equivalently, the temperature structure temperature T (τP). It has the desireable
property that all the terms are frequency-averaged or frequency-integrated (so we don’t have to
explicitly evaluate them frequency by frequency).

However, to use eqtn. (9.3) in practice, knowing that we want a radiative-equilibrium temperature
structure in which the radiative flux H is constant with depth,6 we see that we require a useful
expression for J(τP). To achieve that, we look to the first moment.

9.3.2 First moment

From the first moment of the transfer equation we saw that

dKν(τν)
dτν

=
Fν(τν)

4π
≡ Hν(τν); (8.7)

but in the Eddington (two-stream) approximation Kν = Jν/3 (eqtn. 8.16), and so

dJν(τν)
dτν

= 3Hν(τν).

6Hence the dH(τP)/dτP term goes to zero when we achieve a solution with a correct, radiative-equilibrium, temperature
structure. However, we can’t ignore the term at this stage, because it will be non-zero for any incorrect ’first guess’ temperature
structure.
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Using dτν = −kνdr, and integrating over frequency, then at some Planck-mean optical depth τP∫ ∞

0

dJν(τP)
dr

dν = −3
∫ ∞

0
kνHν(τP) dν,

or, using the flux-mean opacity on the right-hand side

dJ(τP)
dr

= −3kHH(τP). (9.4)

Dividing both sides of eqtn. (9.4) by −kP and integrating over optical depth leads to

J(τP) =

∫ τP

0
3

kH

kP
H(t) dt + J(0)

where J(0) is a constant of integration corresponding to the mean intensity at the surface. Recalling that

J(0) = F(0)/2π,= 2H(0) (8.17)

in the Eddington two-stream approximation, we obtain

J(τP) =

∫ τP

0
3

kH

kP
H(t) dt + 2H(0). (9.5)

This is our required expression for J(τP), the mean intensity at some depth τP in the atmosphere.

9.3.3 The correction

Combining eqtns. (9.3) and (9.5) gives, in effect, the temperature as a function of Planck mean optical
depth, in terms of the Eddington flux – which, for given Teff , we know.

B (T (τP)) =
kJ

kP

[∫ τP

0
3

kH

kP
H(t) dt + 2H(0)

]
−

dH(τP)
dτP

, = σT 4(τP)/π. (9.6)

As in our outline of Λ iteration, some initial trial solution for the temperature structure T1(τP) will, in
general, predict an initial set of fluxes H1(τP) that vary with depth; while in radiative equilibrium the
correct solution should give constant flux H for all τP.

We therefore need to evaluate the correction required to the temperature – or, equivalently, the
correction to frequency-integrated Planck function, B (T (τP)) in eqtn. (9.6), which we can translate
directly into a temperature correction. We write the correction as

∆B (T (τP)) = B (T2(τP)) − B (T1(τP))

where our first-guess solution is B (T1(τP)) and the updated estimate, after adding this correction, is
B (T2(τP)).

Writing eqtn. (9.6) for B(T1) and for B(T2) and subtracting gives

∆B (T (τP)) =
kJ

kP

[
3
∫ τP

0

kH

kP
∆H(t) dt + 2∆H(0)

]
−

d(∆H(τP))
dτP
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where the ‘∆H’ terms are corrections H2 − H1, and we have assumed that the ratios kJ/kP, kH/kP are the
same for the new estimate as for the first one.7

We know what the target value8 is for the Eddington flux – it’s just σT 4
eff
/(4π), which is therefore

always our guess at H2. Similarly, the target gradient, d(H2(τP))/dτP is zero, so

d(∆H(τP))
dτP

=

(
d(H2(τP))

dτP

)
−

d(H1(τP))
dτP

= B (T1(τP)) −
kJ

kP
J1(τP). (9.3)

Our required temperature correction is therefore

∆B (T (τP)) =
kJ

kP

[
3
∫ τP

0

kH

kP
∆H(t) dt + 2∆H(0)

]
− B (T1(τP)) +

kJ

kP
J1(τP) (9.7)

Eqtn. (9.7) allows us to compute the desired correction to the Planck function (or temperature
structure), which can then be applied iteratively as follows:

0. Obtain a first estimate of the temperature structure T (τ) (e.g., from a grey-atmosphere solution);

1. From T (τ), compute Bν (T (τ)), and thence kP (ab initio, or, more realistically, from a
precomputed set of opacities kν(ρ,T )).

2. With the source function in hand, compute the mean intensities J(τP) from the formal solution
(eqtn. 7.23; cf. item 4 in §9.1.1, above), and thence kJ.

3. Similarly, H1(τP) (hence kH) and H1(0) can be computed (eqtns. 7.24, 7.25). We know the true
frequency-integrated flux – it is H = F/4π = σT 4

eff
/4π (at all depths, in radiative equilibrium) –

so we can write the required corrections to the current estimates, H1(τP), as

∆H(τP) = H − H1(τP).

at each depth τP (including τP = 0).

4. Substituting into eqtn. (9.7) gives depth-dependent corrections to B (T1(τP)), hence updated
values, B (T2(τP)) – which translates into an updated temperature structure, T2(τP). Return to
step 1 until convergence is achieved.

7The opacities are updated after we have a new estimate of temperature structure, so we’re always using values from the
previous iteration. Nevertheless, we can safely assume that this will provide a pretty good estimate of the opacity ratios, which
we can expect to be less sensitive to temperature than are the separate values.

8The iterative process won’t converge on it immediately, because we don’t have self-consistent opacities, so it remains a
‘target’ through the process.
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Points to note:

• At depth, J → B (and kJ → kP). Hence the d(∆H)/dτP term, eqtn. (9.3), tends to zero – just as for
Λ iteration.

• However, the first [bracketed] term in eqtn. (9.7) gives rapid convergence at large optical depth,
because the target H is known exactly.

Because eqtn. (9.7) uses an exact calculation of the the flux error to determine the correction,
convergence is rapid (although it isn’t achieved in a single iteration because the calculation is exact for
only approximate estimates of physical parameters). This also ensures that the solution converges to the
correction solution (i.e., correct F0).
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Section 10

Line formation

The strength and shape of absorption lines in stellar spectra vary according to the chemical abundances
and physical conditions in the line-forming regions. In order to study this problem, we modify the
transfer equation to account separately for line and continuum opacities; if there is strong continuum
opacity, then the line must be formed high in the atmosphere, but if the continuum opacity is weaker,
the line can be formed deeper.

We therefore introduce

• kL
ν , k

C
ν : the line and continuum absorption coefficients

• jLν , jCν : the line and continuum emission coefficients

The total optical depth at frequency ν is

dτν = (kL
ν + kC

ν ) ds

and the separate (but cospatial) source functions for the line and continuum are

S L
ν =

jLν
kL
ν

and S C
ν =

jCν
kC
ν

.

We can therefore write the total source function as

S ν =
jLν + jCν
kL
ν + kC

ν

=
(kL
ν /k

C
ν )S L

ν + S C
ν

1 + kL
ν /kC

ν

=
S L
ν + (kC

ν /k
L
ν )S C

ν

1 + kC
ν /kL

ν

.
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Figure 10.1: The mapping between the source function and the line profile; the decrease of the source
function outward through the photosphere produces absorption lines.

(It’s not simply the sum of the source functions, because, e.g., the line emissivity ‘sees’ continuum
opacity).

There is is a close connection between the source function and the observed (i.e., τν = 0) flux in the
line, Fν(0), as we’ve already seen for the continuum in our discussion of the grey atmosphere. For
illustrative purposes, we can adopt a simple linear source function, inspired by the result obtained in the
Eddington approximation for the grey atmosphere, but allowing for a frequency dependence:

S ν(τν) ' aFν(0) (τν + b) . (cf. 8.19)

Evidently, the source function S ν equals the surface flux Fν(0) for some particular value of τν – say, τS
ν .

For our illustrative linear source function,

S ν

Fν(0)
= 1 = a(τS

ν + b), so τS
ν = (1 − ab)/a.

To get some idea of roughly where this occurs we can take numerical values from the grey-atmosphere
solution (a = 3/4π, b = 2/3; eqtn. 8.19) to find τS

ν ' 3.5.

The line absorption coefficient kL
ν necessarily varies across the line, being largest at the line centre.1

Therefore, the condition τν = τS
ν is met nearer the surface of the photosphere closer to the line centre;

that is, the emergent flux in the line originates higher in the atmosphere.2 Hence, if the source function
decreases outwards (as is usually the case), an absorption line is formed (see Fig.10.1).

1The line absorption profile is usually a Voigt function, being the convolution of a Gaussian (arising from thermal broad-
ening) and a Lorentzian (pressure broadening).

2In reality, of course, the emergent flux at any frequency in the line profile –or continuum – comes from a range of depths.
Furthermore the observed line profile may be modified by a variety of macroscopic mechanisms (i.e., process which operate on
linear scales greater than the photon mean free path), such as rotation. The mapping between S ν and Fν(0) holds only for the
’intrinsic’ line profile, in the absence of these mechanisms.
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10.1 Source function for the line

The transition that is responsible for a line may undergo the radiative processes of absorption
(photoexcitation from the lower state ` to the upper state u), spontaneous emission, and stimulated
emission.

The emissivity in the line is

jLν = nuAul ψ(ν) hν.

where nu is the number density of potential emitters, Au,` is the Einstein coefficient for spontaneous
emission,3 ψ(ν) is some function (whose area is normalized to unity) describing the frequency
dependence of the spontaneous emission, and hν is just the energy of an emitted photon.

If the frequency dependence of the absorption and stimulated emission is φ(ν) (again normalized to unit
area), then the corresponding line absorption coefficient is

kL
ν = n` B`u φ(ν) hν − nu Bu` φ(ν) hν

where n` is the number density of absorbers in the lower energy state, and B`u, Bu` are the Einstein
coefficients appropriate to photoexcitation and stimulated emission.

Dividing the two expression gives the generalized line source function,

S L
ν =

jLν
kL
ν

=
nu Au` ψ(ν)

n` B`u φ(ν) − nu Bu` φ(ν)
.

The Einstein coefficients are related through

Bu` gu = B`u g`

Au` =
2hν3

c2 Bu`

(where gu and g` are the statistical weights of levels u and `), allowing us to re-write the generalized
source function for the line as

S L
ν =

2hν3

c2

[
n`
nu

gu

g`
− 1

]−1
ψ(ν)
φ(ν)

. (10.1)

3Au,` describes the probability of spontaneous decay per unit time. The probability that an atom emits a photon in the time
interval dt, frequency interval dν, and solid angle dω is Au,` dt dω dν ψ(ν) and if the initial number density of particles in the
excited state is nu, then dnu/dt = −Au,`nu(t)
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The concealed complexity in this superficially straightforward formalism is in the evaluation of the
population ratios n`/nu. In statistical equilibrium the number density of ions with electrons in some
level j is

dn j

dt
=

∑
i, j

(
niri j − n jr ji

)
= 0

where ri j is the rate at which electrons move from state i to state j as a consequence of all processes
(radiative and collisional),

ri j = 4πAi j + 4πBi j

∫ ∞

0
Jνφ(ν) dν + Ci j.

That is, the level populations n depend on the mean intensity, Jν, and hence on the source function
(eqtn. 7.21). . .but the source function depends on the level populations (eqtn. 10.1).

Only if collisional process dominate is this interdependence broken; then Boltzmann equilibrium
applies, and

nu

n`
=

gu

g`
exp

{
−hν
kT

}
.

Furthermore, in equilibrium, on average, then frequency by frequency there must be an absorbed photon
for every emitted photon, and φ(ν) = ψ(ν). In this case, eqtn. (10.1) becomes

S ν =
2hν3

c2

{
exp

(
hν
kT

)
− 1

}−1

≡ Bν(T )

The line is then formed in LTE and we recover the result that the line source function is the Planck
function. LTE is a crude but useful approximation for line-formation computations and has been used
extensively in modelling of spectral lines (though this is becoming less commonplace with increasing
computing power).

10.2 Computation of a weak-line profile

Recalling that S ν(τν) = Fν(0) for some value τν = τS
ν (' 3.5 according to our earlier

back-of-the-envelope estimate), we can write the normalized line profile directly in terms of the source
function:

Fν

Fc
'

S ν(τT
ν = τS

ν )
S ν(τC

ν = τS
ν )

(10.2)
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where Fν, Fc are the observed and continuum fluxes;4 S ν(τν = τS
ν ) is the source function where the

optical depth τν has the numerical value τS
ν ; and the total (combined line+continuum) source function at

this optical depth is

S ν(τT
ν = τS

ν ) ≡ S ν(τL
ν + τC

ν = τS
ν ),

= S ν(τC
ν = τS

ν − τ
L
ν )

(by simple algebra). We can develop the right-hand side as a Taylor expansion around the point τC
ν = τS

ν :

S ν(τT
ν = τS

ν ) ≈ S ν(τC
ν = τS

ν ) +
dS ν

dτC
ν

∣∣∣∣∣∣
τS
ν

×
(
−τL

ν

)
+ . . .

Eqtn. (10.2) then becomes

Fν

Fc
'

S ν(τC
ν = τS

ν )
S ν(τC

ν = τS
ν )
−

τL
ν

S ν(τC
ν = τS

ν )
×

dS ν

dτC
ν

∣∣∣∣∣∣
τS
ν

+ . . .

In the weak-line approximation τL
ν � τC

ν ; so, taking just these first two terms,

Fν

Fc
' 1 −

τL
ν

S ν(τC
ν = τS

ν )
×

dS ν

dτC
ν

∣∣∣∣∣∣
τs
ν

= 1 − τL
ν

d ln S ν

dτC
ν

∣∣∣∣∣∣
τS
ν

(10.3)

If the ratio of line to continuum opacities, kL
ν /k

C
ν , doesn’t vary strongly with depth then

τL
ν

τC
ν

'
kL
ν

kC
ν

(for any value of τ). Furthermore, τC
ν ≈ τ

S
ν in the weak-line limit. Thus

τL
ν ' τ

C
ν

kL
ν

kC
ν

,' τS
ν

kL
ν

kC
ν

.

With this approximation, eqtn. (10.3) becomes

Fν

Fc
≈ 1 − τS

ν

d ln S ν

dτC
ν

∣∣∣∣∣∣
τS
ν

kL
ν

kC
ν

= 1 − constant ×
kL
ν

kC
ν

; i.e., (10.4)

1 −
Fν

Fc
∝

kL
ν

kC
ν

4‘Continuum flux’ is to be understood as the flux that would be observed if no line was present.
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Figure 10.2: Fig. 13.15 of Gray’s book. The observed Hγ, profile is shown by the circles. (Several weak
lines are also present, including at −33, −26, −20, and −15Å.) The calculated LTE profile is shown by
the line. The theoretical profile agrees adequately in the wings; in the core, however, the observed line is
significantly deeper than the calculated one.

Equation (10.4) represents the approximate line profile of a ‘weak’ line (τL
ν � τC

ν ). It shows that:

• The shape of the line profile for a weak line is proportional to kL
ν . In fact, it mimics directly the

frequency dependence of kL
ν if the continuum opacity kC

ν varies little across the line profile (as is
usually the case).

• More generally, the strength of the line profile is proportional to kL
ν /k

C
ν , which means it can be

increased not only by increasing kL
ν , but also by decreasing kC

ν at the line frequency.

[Intuitively, the absorption-line strength must depend on both the line opacity and the amount of
material doing the absorbing. If the continuum opacity is high, we can see only a relatively short
distance into the atmosphere, so the amount of material capable of line absorption is relatively
small, which is why the line strength depends on the continuum opacity.]

• Furthermore, in LTE a spectral line can never go to zero intensity. Recall, the observed flux
(including at the line centre) is equal to the source function at some finite optical depth (∼ 31/2 for
our rough estimate). Because S ν(τ) = Bν(T (τ)) in LTE, and T (τ) is always greater than zero (e.g.,
& 0.8Teff in the grey-atmosphere approximation; eqtn. 8.21), it follows that the line-centre flux is
also always greater than zero.

In general (for both strong and weak lines), the line profile is strongly dependent on T, P, and on the
chemical composition of the material (gas) in the line-emitting region, as these quantities enter the
evaluation of kL

ν . Conversely, photospheric absorption lines provide potentially powerful diagnostics of
these atmospheric parameters.
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Figure 10.3: Fig. 13.16 of Gray’s book. Observations of the solar sodium-D lines are compared with an
LTE model. Serious discrepancies are seen in the core. (Almost all the weaker lines arise from telluric
water vapour.)

10.3 Breakdown of LTE

Sometimes the LTE approximation can be acceptably good, sometimes really poor. We can anticipate
circumstances under which we can be confident that it won’t be satisfactory (e.g., when excitation and
ionization are certainly not determined collisionally – low-density nebulae, for example) but the only
way to tell for sure if it’s adequate is to compute the problem in both LTE and non-LTE (or sometimes,
and less reliably, to compare the expectations of a model with observations).

LTE is most likely to be an acceptable approximation when the rate of collisionally-induced transitions
greatly exceeds radiatively-induced transitions, or when the loss of radiation is small with respect to the
radiation field in the volume (i.e. if κ is large).

We can therefore expect LTE to be a poor approximation

• In the outer photospheric layers, where radiation is free to escape into space.

• In the cores of strong lines, formed in the outer layers of the photospheres

• In O stars, where radiative rates exceed collisional rates by a large factors throughout the
atmosphere.

• Similarly, in supergiants where the atmospheric density is very low (and hence collisional rates
low).
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Fig 10.2 shows observations of H-alpha in θ Leo, compared to a theoretical profile computed in LTE.
The figure shows that the fit to the wings (formed deep in the atmosphere) is good, but the observed line
core is deeper than the theoretical one. This is a common failure of LTE computations and in fact, for
this particular line, back in 1970 and 1972 Auer and Mihalas have found that a better agreement is
reached by using non-LTE computations.

Also, in Vega and Sirius a better agreement with non-LTE computations is found in the analysis of the
Paschen continuum, Balmer jump and Balmer lines (exclusive to the core). A similar situation occurs
with other lines. For instance (Fig.10.3), the sodium D-lines in the Sun are well fitted by LTE models in
the wings, but not in the cores.

The reality can be even more complex: non-LTE calculations generally show deeper cores than LTE
ones, but still sometimes they do not fit. The cause can be multiple:

• part of the discrepancy may be due to non thermal motions. Solar-D lines observations show their
profile varies with time and with position on the solar disk. For other stars, the spatial information
is lost and we need to deal with average properties.

• Also, saturated lines are stronger than predicted⇒ this may be due to turbulence effects.

• Many stars show spectral lines broadened by large amounts. Ex lines of δCas are broadened by
∼ 130 km/s, nearly two order of magnitudes more than what is expected from thermal broadening
⇒ rotational Doppler broadening, effect from macroturbulence.
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10.4 P-Cygni profiles

Figure 10.4: Formation of P-Cygni profiles.

P-Cygni profiles consist of a blue-shifted absorption component and a red-shifted emission
components; they are characteristic of mass loss. The simplest mechanism for line formation (and the
one which applies to ultraviolet P-Cygni profiles in most OB stars) is resonance-line scattering.

Ions in the (relatively low-density) outflow are normally in the ground state – i.e., every electron is in
the lowest available energy level. This is, of course, a strongly non-LTE situation, which arises because
particle collisions are generally of almost no importance in established ionization and excitation
equilibria – photoionization, photoexcitation, and radiative recombination dominate. We also have to
abandon hydrostatic equilibrium!

A resonance line is formed by the transition of an outer electron from the ground state to the first
excited energy level, or vice versa. Resonance-line scattering occurs when a photon of the correct
energy photo-excites an electron from the ground state, followed very rapidly by spontaneous decay
(typically on timescales of order 10−6 s or less). The photon must have the correct wavelength in the
rest frame of the scatterer; because the scatterer is moving with respect to the star (and the observer),
this ‘correct wavelength’ will be Doppler shifted from the laboratory wavelength.

Fig. 10.4 illustrates the actual line formation process. There is a radial outflow of matter which
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accelerates fron essentially zero velocity at the photosphere to a maximum, or terminal, velocity, v∞
(perhaps ∼2000 km s−1), at large distance from the star.

Photons that are originally emitted in the direction of the observer may interact with the column of gas
seen in projection against the photosphere, and be scattered out of the line of sight, producing, in effect,
an absorption line. This gas is flowing away towards the observer, producing blue-shifted absorption
over the range of velocities that occur in the wind, from 0 to v∞. (Note that the line can – and often does
– go to zero intensity; LTE does not apply here!)

However, photons are not destroyed in the scattering process, and so for every photon scattered out of
the line of sight in the column of gas seen projected against the photosphere, there must be a photon
scattered into the line of sight elsewhere in the wind.5 The range of velocities in this ‘halo’ around the
star is from +v∞ approaching the observer to −v∞ receding, with the extra emission is Doppler-shifted
over this same range. The combination of absorption from zero velocity to +v∞ and emission from +v∞
to −v∞ produces the P-Cygni profile.

(The astute student will notice that the nett effect from the observer’s perspective is that some photons
have been shifted from the blue part of the profile to red part of the profile – thereby losing energy. It is
this ‘lost’ energy that goes into accelerating the outflow as it moves away from the star; some of the
outward momentum of the photons is transferred to the scattering particles as they interact.)

5Photons are not strictly conserved, because some are scattered back into the photosphere.
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PHAS0036 – Part II, Stellar Structure & Evolution



Section 11

Introduction to Stellar Structure and
Evolution [review of PHAS0018 material]

11.1 Motivation

In this part of the course, we consider aspects of the internal operation of (principally) single stars: their
structure and evolution. Our overarching aim in this is to interpret observations such as the
Hertzsprung–Russell diagrams shown in Fig. 11.1

For the present purposes, we use a working definition of a star as an isolated body that is bound by
self-gravity, and which radiates energy supplied by an internal source. Self-gravity ensures that the star
is approximately spherical (rotation introduces centrifugal forces which, for sufficiently fast rotation,
may introduce distortions); the internal source of energy is nuclear fusion for most of the stellar lifetime
(although for, e.g., white dwarfs, stored thermal energy is responsible for the observed luminosity).

The essence of stellar structure is the competition between the force of gravity, which always wants to
make a star collapse, and the outward force of pressure. For almost the entire lifetime of a star, these
forces are in balance; the star is in (or very close to) hydrostatic equilibrium, but as internal energy is
released, the internal composition, and hence structure, must evolve. Thus ‘stellar structure’ and
‘evolution’ are intimately linked.

11.2 Stellar-structure equations

For reference, we remind ourselves of the basic equations of stellar structure:
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Figure 11.1: Hertzsprung–Russell (colour–magnitude) diagrams. Left, Hipparcos volume-limited sam-
ple (stars of different ages); right, HST observations of the globular cluster 47 Tuc (coeval sample).

11.2.1 Hydrostatic (pressure) equilibrium

Using standard terminology elaborated at the end of this section, hydrostatic equilibrium (HSE) is
described by

dP(r)
dr

=
−Gm(r)ρ(r)

r2 = −ρ(r) g(r) (2.1)

or

dP(r)
dr

+ ρ(r) g(r) = 0

The principal sources of pressure throughout a ‘normal’ (non-degenerate) star are gas pressure, and
radiation pressure.1 We will take the corresponding equations of state to be, in general,

PG = nkT ;

= (ρkT )/(µm(H)) (2.4)

PR =
1
3

aT 4 (3.21)

for number density n at temperature T , density ρ; µ is the mean molecular weight, and m(H) the
hydrogen mass; a is the radiation constant, a = 4σ/c; with σ the Stefan-Boltzmann constant, and k
Boltzmann’s constant.

1Electron degeneracy pressure is important in white dwarfs, and neutron degeneracy pressure in neutron stars.
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11.2.2 Mass Continuity

For spherical symmetry, the equation of mass continuity for static configurations is

dm
dr

= 4πr2ρ(r) (2.5)

[In a spherically symmetric flow, such as may apply in a stellar wind with mass-loss rate Ṁ, we instead
have

Ṁ = 4πr2ρ(r)3(r)

where ρ(r), 3(r) are the density and (radial) flow velocity at radius r.]

11.2.3 Energy continuity

dL
dr

= 4πr2 ρ(r)ε(r) (2.7)

where

• r is radial distance measured from the centre of the star

• P(r) is the total pressure at radius r

• ρ(r) is the density at radius r

• g(r) is the gravitational acceleration at radius r

• m(r) is the mass contained with radius r

• L(r) is the total energy transported through a spherical surface at radius r

• ε(r) is the energy generation rate per unit mass at radius r

The stellar radius is R, the stellar mass is M ≡ m(R), and the emergent luminosity L ≡ L(R) (dominated
by radiation at the stellar surface).
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11.3 Virial theorem

In its most general form, the virial theorem expresses the relationship between the total kinetic energy
of a system and its total potential energy. For our purposes, it relates the gravitational potential energy
Ω and thermal energy U in a ‘virialized system’ (such as a star):

2U + Ω = 0 (11.1)

or U = −Ω/2; thus the total energy is

E = U + Ω = Ω/2,

(which must be negative for the system to be bound).

11.4 Timescales

Several timescales are relevant to the study of stellar structure and evolution:

• The free-fall, or dynamical timescale, on which departures from hydrostatic equilibrium are
restored in stellar systems,

tdyn '

√
r3

Gm(r)
(11.2)

' 1/
√

(Gρ) ∼ 2000 s for the Sun

• The Kelvin–Helmholtz timescale, the time taken for the gravitational potential energy to be
radiated away:

tKH =
|Ω|

L

where

Ω =

∫ R

0
−G

16π2

3
r4ρ2(r) dr

' −
16
15
π2Gρ2R5

= −
9
15

GM2

R

(assuming ρ(r) = ρ(R)). The Kelvin–Helmholtz timescale for the Sun (ρ = 1.4 × 103 kg m−3,
Ω = 2.2 × 1041 J) is tKH ' 107 yr.
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• The thermal timescale is properly defined as

tth =
U(�)
L�

, (11.3)

which (from the virial theorem) is ∼ 1/2tKH. In practice, the factor 2 difference is of little
importance for these order-of-magnitude timescales, and it is commonplace to take

tth ' tKH

• The nuclear timescale is a measure of how long it takes the reservoir of nuclear energy to be
released,

tN =
fNMc2

L
(11.4)

where fN is just the fraction of the rest mass available to the relevant nuclear process. In the case
of hydrogen burning the fractional ‘mass defect’ is 0.007, so we might expect

tN =
0.007M�c2

L�
(' 1011 yr for the Sun).

However, in practice, only the core of the Sun – about ∼10% of its mass – takes part in hydrogen
burning, so fN ' 10−3, and the nuclear timescale for hydrogen burning is ∼ 1010 yr for the Sun.
Other evolutionary stages have their respective (shorter) timescales.

Overall, tdyn < tKH ' tth < tN. We will see that each of these timescales is appropriate, in turn, in the
evolution of stars.

11.5 Pressure and temperature in the cores of stars

We can use the foregoing results immediately in order to obtain some very crude indicators of
conditions in the cores of stars.

11.5.1 Central pressure (1)

The equation of hydrostatic equilibrium gives a rough order-of-magnitude estimate of pressures in
stellar interiors; by letting dr = R∗ (for an approximate solution!) then

dP(r)
dr

=
−Gm(r)ρ(r)

r2 (2.1)

becomes

PC − PS

R∗
'

GM∗ρ
R2
∗
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where PC, PS are the central and surface pressures; and since PC � PS,

PC '
GM∗ρ

R∗
(11.5)

=
3

4π
GM2

∗

R4
∗

' 3 × 1014 Pa (=N m−2) (11.6)

(or about 1010 atmospheres) for the Sun. Because of our very crude approximation in integrating
eqtn. (2.1) we expect this to be an underestimate (more nearly an average than a central value), and
reference to more-detailed models2 shows that it indeed falls short by about two orders of magnitude.
Nevertheless, this simple calculation does serve to demonstrate high core values, along with a ∼M2/R4

dependence of PC.

11.5.2 Central pressure (2)

Another estimate can be obtained by dividing the equation of hydrostatic equilibrium (2.1) by the
equation of mass continuity (2.5):

dP(r)
dr

/
dm
dr
≡

dP(r)
dm

=
−Gm(r)

4πr4

Integrating over the entire star,

−

∫ M∗

0

dP(r)
dm

dm = PC − PS =

∫ M∗

0

Gm(r)
4πr4 dm.

Evidently, because R∗ ≥ r, it must be the case that∫ M∗

0

Gm(r)
4πr4 dm ≥

∫ M∗

0

Gm(r)
4πR4

∗

dm︸              ︷︷              ︸
=

GM2
∗

8πR4
∗

;

(11.7)

that is,

PC >
GM2

∗

8πR4
∗

(+PS, but PS ' 0)

> 4.5 × 1013 Pa (=N m−2)

for the Sun. This is a weaker estimate than, but is consistent with, eqtn. (11.5), and shows the same
overall scaling of PC ∝ M2

∗/R
4
∗.

2A more accurate result will be obtained later on from polytropic models; eqtn. (14.13)
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11.5.3 Central temperature

For a perfect gas,

P = nkT =
ρkT
µm(H)

(2.8)

but

PC '
GM∗ρ

R∗
(11.5)

so

TC '
µm(H)

k
GM∗
R∗

ρ

ρC

' 2.3 × 107 µ
ρ

ρC
K (11.8)

for the Sun – which is suprisingly close to the results of detailed calculations (∼ 1.5×107 K). Note that
at these temperatures the gas is fully ionized, and the perfect gas equation is an excellent approximation.

11.5.4 Mean temperature

We can use the Virial Theorem to obtain a limit on the mean temperature of a star. We have

U =

∫
V

3
2

kT (r) n(r) dV (11.9)

=

∫
V

3
2

kT (r)
ρ(r)
µm(H)

dV

=

∫ M∗

0

3
2

kT (r)
ρ(r)
µm(H)

dm
ρ(r)

and

−Ω =

∫ M∗

0

Gm(r)
r

dm (11.10)

>

∫ M∗

0

Gm(r)
R∗

dm

>
GM2

∗

2R∗

From the Virial Theorem, 2U = −Ω (eqtn. 11.1), so

3k
µm(H)

∫ M∗

0
T dm >

GM2
∗

2R∗

107



The integral represents the sum of the temperatures of the infinitesimal mass elements contributing to
the integral; the mass-weighted average temperature is

T =

∫ M∗
0 T dm∫ M∗
0 dm

=

∫ M∗
0 T dm

M∗

>
GM∗
2R∗

µm(H)
3k

For the Sun, this evaluates to T (�) > 2.3 × 106 K (using µ = 0.61), i.e., kT ' 200 eV – comfortably in
excess of the ionization potentials of hydrogen and helium (and enough to substantially ionize the most
abundant metals), justifying the assumption of complete ionization in evaluating µ.

11.5.5 Solar values

Many very detailed models of the Sun’s structure have been constructed, some in the contexts of
helioseismology or of studying the solar-neutrino problem; for reference, we give the results one of
these detailed models, namely Bahcall’s standard model bp2004stdmodel.dat. This has

Tc = 1.570 × 107 K

ρc = 1.531 × 105 kg m−3

Pc = 2.351 × 1016 N m−2

with 50% (95%) of the solar luminosity generated in the inner 0.1 (0.2) R�.
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Section 12

Energy transport – I. Radiation

Stars are self-evidently hotter inside than outside (so that, e.g., nuclear fusion may occur), so there must
be an energy flow. We are familiar with three basic mechanisms of energy transport:
– radiation
– convection
– conduction

In the context of stellar astrophysics, conduction is important only under the degenerate conditions
found in white dwarfs and neutron stars (since gases in general are poor conductors). For ‘normal’ stars,
therefore, the key processes transporting energy are radiation and convection.

Radiative transport: Energy is transported by photons. In stellar interiors the opacities are high, and the
mean free path correspondingly low – about 1 mm in the case of the Sun (Box 12.3). In this sense, the
radiation doesn’t flow outwards, but rather diffuses outwards.

Convective transport: If the radiation is unable to escape a layer at a rate that matches the energy input,
then ‘something’s got to give’. What gives is the static nature of the layer: convection is initiated and
starts to transport energy. This suggests that hydrostatic equilibrium breaks down; but the dynamical
timescale is short compared to the flow timescale, so in practice HSE continues to be an excellent
approximation.

The nett energy flux is, under most circumstances, simply the sum of radiative and convective terms,

L(r) = Lrad(r) + Lcnv(r)

In order to determine under what circumstances convection is important, we first evaluate how much
energy can be transported by radiation alone.
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12.1 The equation of radiative transfer in stellar interiors

In optically thick environments – in particular, stellar interiors – radiation is often the most important
transport mechanism, but, to repeat, for large opacities the radiant energy doesn’t flow directly
outwards; instead, it diffuses slowly outwards.

To express this transport quantitatively, the same general principles may be applied as led to the
equation of radiative transfer in plane-parallel stellar atmospheres,

µ
dIν
dτν

= Iν − S ν. (7.14)

[In the interior the photon mean free path is (very!) short compared to the radius, so ‘plane parallel’ is
fine.]

We recall that, in general, the intensity, Iν, at some position is direction-dependent; i.e., is Iν(θ, φ)
(although the explicit angular dependence is generally dropped for economy of nomenclature); the same
is true in principle of the source function, although in practice any such dependence is negligible in
stellar interiors.1

We proceed exactly as in our discussion of the Milne equations for radiative equilibrium (§8.2.1). That
is, we multiply eqtn. (7.14) by µ ≡ cos θ and integrate over solid angle, using
dΩ = sin θ dθ dφ = −dµ dφ; then

d
dτν

∫ 2π

0

∫ +1

−1
µ2Iν(µ, φ) dµ dφ =

∫ 2π

0

∫ +1

−1
µIν(µ, φ) dµ dφ −

∫ 2π

0

∫ +1

−1
µS ν(µ, φ) dµ dφ;

The radiation field in the interior is axially symmetric, (i.e., no azimuthal dependence), so
∫ 2π

0 dφ = 2π
on both sides, and cancels, whence

d
dτν

∫ +1

−1
µ2Iν(µ) dµ =

∫ +1

−1
µIν(µ) dµ −

∫ +1

−1
µS ν(µ) dµ, (8.6)

which we’ve already seen (in §8.2.1).

Working through the terms in this equation from right to left, we can safely assume that the source
function is isotropic (since we expect the emissivity and opacity to be locally isotropic in the interior),
so the ‘S ν’ term comes out of the integral, which then evalautes to zero.

The next (i.e., first) term on the right-hand side should be familiar; recall that

1
2

+1∫
−1

µIν(µ) dµ = Hν =
Fν

4π
(3.11)

1The radiation quantities in eqtn. (7.14) are, of course, implicitly also functions of depth (τ or r).
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where Hν is the Eddington flux, or first-order moment of the radiation field. This is progress: the flux is
the rate of energy transport, which is what we’re seeking to evaluate.

Finally, the left-hand term in eqtn. (8.6) contains the second-order moment of the radiation field, or ‘K
integral’

1
2

+1∫
−1

µ2Iν(µ) dµ ≡ Kν. (3.12)

Using eqtns. (3.11) and (3.12) for the first two terms in eqtn. (8.6), we recover a previous result,

dKν

dτν
=

Fν

4π
. (8.7)

So far, our analysis has closely followed our discussion for stellar atmospheres. However, in interiors
the radiation field is locally isotropic to a very good approximation (see Box 12.2), so in this instance –
unlike the stellar-atmosphere case – we can take Iν out of the integral in eqtn. (3.12), whence

Kν =
1
2

Iν
µ3

3

∣∣∣∣∣∣+1

−1

=
1
3

Iν

[
≡

1
3

Jν for isotropy
]
, (3.13)

so, from eqtn. (8.7),

1
3

dIν
dτν

=
Fν

4π
. (12.1)

Because the photon mean free paths are very short, conditions in the interior are very close to local
thermodynamic equilibrium (LTE). We therefore set Iν = Bν(T ), the Planck function; and by definition,
dτν = −kν dr (where the minus arises because the optical depth is measured inwards, and decreases with
increasing r). Making these substitutions into eqtn. (12.1); introducing a term dT/dT ; and integrating
over frequency,∫ ∞

0
Fν dν = −

4π
3

∫ ∞

0

1
kν

dBν(T )
dT

dT
dr

dν (12.2)

To simplify this further, we recall that the Rosseland mean opacity, kR (= κRρ),2,3 is defined by

1

kR

∫ ∞

0

dBν(T )
dT

dν =

∫ ∞

0

1
kν

dBν(T )
dT

dν, (5.1)

which can be evaluated separately, as a function of temperature and density.
2Remember, opacity may be expressed in several ways, most commonly as ‘per unit mass’ or ‘per unit volume’. We use k

to denote opacity per unit volume, and κ where reference is made to opacity per unit mass; thus k = κρ.
3The Rosseland mean opacity represents the harmonic mean of kν, weighted by dBν(T )/dT . This weighting factor is small

for very low and very high frequencies, and peaks at νp = 4kT/h.
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Furthermore, given that∫ ∞

0
πBν dν = σT 4

we also have∫ ∞

0

dBν(T )
dT

dν =
d

dT

∫ ∞

0
Bν(T )dν

=
4σT 3

π

(at given T ) so that eqtn. (12.2) can be written as∫ ∞

0
Fν dν = −

4π
3

1

kR

dT
dr

4σT 3

π
; (12.3)

that is, the total (frequency-integrated) radiant energy flux is

F = −
4
3

acT 3

kR

dT
dr

(12.4)

where a is the radiation constant, 4σ/c (and the minus sign simply means that the energy flows in the
opposite direction to the temperature gradient).

Equation (12.4) is our adopted form for the radiative flux, or transport of energy by radiation. It’s
essential property is that F ∝ dT/dr (with no direct dependence on the rate of energy generation!); that
is, radiative diffusion is completely analogous to Fourier’s law of thermal conduction. It may be applied
in environments where the photon mean free path is short compared to the scales over which physical
parameters (notably temperature) change; it therefore becomes inappropriate as the stellar surface is
approached, where a more detailed approach to radiative transfer is required.

Box 12.1. The radiative energy density is U = aT 4 (eqtn. 3.16), so that dU/dT = 4aT 3, and
we can express eqtn. (12.4) as

F =

∫ ∞

0
Fν dν

= −
c

3kR

dT
dr

dU
dT

= −
c

3kR

dU
dr

This ‘diffusion approximation’ shows explicitly how the radiative flux relates to the energy-
density gradient; the constant of proportionality, c/3kR, is called the diffusion coefficient. The
larger the opacity, the less the flux of radiative energy, as one might intuitively expect.
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12.2 The radiative temperature gradient

The stellar luminosity at some radius r is given by

L(r) = 4πr2
∫ ∞

0
Fν dν

so, from eqtn. (12.4)

L(r) = −
16π

3
r2

kR

dT
dr

acT 3, (12.5)

For given L, we can simply rearrange eqtn. (12.5) to express the temperature gradient where energy
transport is radiative:

dT
dr

= −
3

16π
kR

r2

L(r)
acT 3 = −

3
16π

κRρ(r)
r2

L(r)
acT 3 . (12.6)

We’ll need this in a slightly different form later on, so combining this result with hydrostatic
equilibrium,

dP(r)
dr

=
−Gm(r)ρ(r)

r2 , (2.1)

we obtain

dT
dP

=
3κRL(r)

16π acT 3 Gm(r)
(12.7)

or equivalently, since d ln x
dx

= 1
x ,

d ln T
d ln P

=
3κRL(r)P

16π acT 4 Gm(r)
(12.8)

(a form that we’ll use in Section 13.2).

12.3 Von Zeipel’s law (not in lectures)

From eqtn. (12.4),

F ∝
T 3

κR ρ

dT
dr

(12.9)

∝
T 3

κR ρ

dT
dψ

dψ
dr

(12.10)
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where ψ is the gravitational potential (and hence dψ/dr is the local gravity,4 g). In hydrostatic
equilibrium (see eqtn. 2.1)

dP
dr

= −ρ(r)g(r) ∝ ρ
dψ
dr

(2.1)

so that the pressure P is a function of the potential ψ – and hence the density must also be a function
of ψ.5 For an equation of state of the general form

T = T (P, ρ) (12.11)

we therefore see that T must also be a function of ψ,

T = T (ψ). (12.12)

The coefficient of dψ/dr in eqtn. (12.10) is therefore a function of ψ alone, whence

F ∝
dψ
dr
∝ g (12.13)

or, equivalently,

Teff ∝ g0.25 (12.14)

which is known as von Zeipel’s law. Although it relies on the assumption of radiative energy
transport by diffusion, which breaks down in a stellar atmosphere, the atmosphere is usually very
thin compared to the radiative envelope, so even the surface flux can be expected to obey
eqtn. (12.14) for stars in hydrostatic equilibrium and for which energy transport through the outer
envelope is radiative.

Von Zeipel’s law is of particular interest for close binary stars and rapidly rotating single stars. In
either case, the local gravity, and hence the local temperature, can vary over the stellar surface
(which is conventionally defined by a constant potential). Although increasing gravity results in
increasing flux, the practical effects have come to be known as gravity darkening, because rapid
rotation, or a close companion star, both serve to reduce a star’s local gravity (and hence reduce the
temperature locally).

It’s of interest that von Zeipel also demonstrated that a rotating star cannot be simultaneously in
strict hydrostatic and radiative equilibrium, undermining the basis of his ‘law’. In practice, as shown
by Eddington and by Sweet, rotation induces circulation currents in the stellar interior; however,
these currents are sufficiently slow as to not lead to significant departures from hydrostatic
equilibrium (the circulation timescales are long compared to the dynamical timescales discussed in
Section 11.4), and gravity darkening is observed to occur in practice.

4In circumstances where von Zeipel’s law is important, gravity is, in general, not a central force, so we should actually set
g = ∇ψ; but the central-force approximation is adequate for our purposes (and the correct general result is obtained).

5Since ρ is a scalar, the gradients of P and ψ are everywhere parallel.
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12.4 Mass–Luminosity Relationship

We can now put together our basic stellar-structure relationships to demonstrate a scaling between
stellar mass and luminosity. From hydrostatic equilibrium,

dP(r)
dr

=
−Gm(r)ρ(r)

r2 → P ∝
M
R
ρ (11.5)

but our (gas) equation of state is P = (ρkT )/(µm(H)), so

T ∝
µM
R

(and dT/dR ∝ R−2,∝ T/R). For stars in which the dominant energy transport is radiative, we have

L(r) ∝
r2

kR

dT
dr

T 3 ∝
r2

κRρ(r)
dT
dr

T 3 (12.5)

so at the surface (r = R)

L ∝
RT 4

κRρ
.

From mass continuity (or just by inspection) ρ ∝ M/R3, giving

L ∝
R4T 4

κRM

∝
R4

κRM

(
µM
R

)4
;

i.e.,

L ∝
µ4

κR
M3.

This simple dimensional analysis (which makes no assumptions about energy sources) yields a
dependency which is in quite good agreement with observations; for solar-type main-sequence stars, the
empirical mass–luminosity relationship is L ∝ M3.5. Small discrepancies between the simple analysis
and nature should come as no surprise, as our two underpinning assumptions – radiative energy
transport and negligible radiation-pressure support –are never fully realised in real stars.
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Box 12.2. It may not be immediately obvious that the intensity of the radiation field in stellar interiors
is, essentially, isotropic; after all, outside the energy-generating core, the full stellar luminosity is
transmitted across any spherical surface of radius r. However, if this flux is small compared to the
local mean intensity, then isotropy of the latter is justified.
The total radiative flux passing through a sphere of radius r (outside the energy-generating core) must
equal the total radiative flux at R (the surface); that is,

F(r) =
4πR2σT 4

eff

4πr2

= σT 4
eff

R2

r2

while in the interior the mean intensity is

Jν(r) ' Bν(T (r)) = σT 4(r).

The ratio of flux to mean intensity is thus

F(r)
J(r)

=

(
Teff

T (r)

)4 (R
r

)2

.

The temperature rises rapidly below the surface of a star, so this ratio is always small; for example, in
the Sun, T (r) ' 0.5 MK at r = 0.9R�, whence F/J ' 10−8 – that is, the radiation field is isotropic to
around 1 part in a hundred million.
Equivalently, the average temperature gradient from the centre of the Sun (for example) to the surface
is

∆T
∆r

=
Tc − Teff

R�
' 10−2 K m−1 (12.15)

The photon mean free path is ` = 1/κ ' 1 mm (§7.2; numerical value from detailed models), so the
temperature change over this distance is of order 10−5 K. The radiant energy density is U = aT 4, so
the relative anisotropy ∆U/U = 4∆T/T ' 10−11 at 106 K.

Nonetheless, although the anisotropy is very small, the nett radiation flux is large – in fact, equal to

the stellar luminosity.
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Box 12.3: Diffusion timescale for radiative transport
Deep inside stars the radiation field is very close to black body. For a black-body distribution the
average photon energy is

E = U/n ' 4 × 10−23T [J photon−1]. (3.18)

The core temperature of the Sun is Tc ' 11/2 × 107 K (cf. eqtn. 11.8), whence E = 3.5 keV – i.e.,
photon energies are in the X-ray regime.
Light escaping the surface of the Sun (Teff ' 5770K) has a mean photon energy ∼ 3 × 103 smaller, in
the optical.
The source of this degradation in the mean energy is the coupling between radiation and matter.
Photons obviously don’t flow directly out from the core, but rather they diffuse through the star,
travelling a distance of order the local mean free path, `, before being absorbed and re-emitted in
some other direction (a ‘random walk’).a The mean free path depends on the opacity of the gas:

` = 1/kν = 1/(κνρ) (7.5)

where kν is the volume opacity (dimensions of area per unit volume, or SI units of m−1) and κν is the
mass opacity (area per unit mass, so units of m2 kg−1).
After nsc scatterings the radial distance travelled is, on average,

√
nsc` (it’s a statistical, random-walk

process). Thus to travel a distance R� we require

nsc =

(
R�
`

)2

. (12.16)

Solar-structure models give an average mean free path of ` ' 1 mm (incidentally, justifying the LTE
approximation in stellar interiors); with R� ' 7 × 108 m we have

nsc ' 5 × 1023.

The total distance travelled by a (fictitious) photon travelling from the centre to the surface is nsc×` '

5 × 1020 m (∼ 1012R�!), and the time to diffuse to the surface is (nsc × `)/c ' 5 × 104 yr.

[More-detailed calculationsb give 17 × 104 yr; why? Simply because the volume opacity in the inner
regions of the Sun is greater than the average value, so the mean free path there is shorter. Because
of the ‘square root’ nature of the diffusion, a region with twice the volume opacity takes four times
longer to pass through, while a region with half the volume opacity takes only 1.414 times shorter;
so any non-uniformity in the volume opacity inevitably leads to a longer total diffusion time than the
simple estimate based on a constant mean free path.]

aOf course, no single photon really travels from the core to the surface, and the mean photon energy is
steadily degraded moving outwards; but for heuristic purposes we can at least consider a photon emitted at the
surface to be the nth-generation descendant of a photon generated in the core.

bMitalas & Sills, ApJ, 401, 759, (1992). Even these ‘more-detailed’ calculations are quite crude estimates,
ignoring any frequency dependence.

117



118



Section 13

Energy transport – II. Convection

For convection to occur, then clearly there must be some temperature gradient (in the case of stars, a
radial temperature gradient). We have seen that, where energy transport is radiative, the temperature
gradient is given by

dT
dr

= −
3

16π
kR

r2

L(r)
acT 3 (12.6)

that is, high opacity leads to large temperature gradients (as we might expect intuitively; the opacity
blocks the flow of radiant energy from hotter to cooler regions, so there’s a strongh temperature gradient
across the opaque region). If the energy flux isn’t contained by the temperature gradient, we have to
invoke another mechanism for energy transport: convection (since conduction is negligible in ordinary
stars.) Under what circumstances will this arise? Karl Schwarzschild1 (1906) developed a now-standard
criterion for determining when convection will occur.

13.1 The Schwarzschild criterion

To follow Schwarzschild’s reasoning, we suppose that we start with a stellar envelope in radiative
equilibrium and that, through some minor perturbation, a cell (or bubble, or blob) of gas is displaced
upwards within the star. Our basic physical assumptions are that the cell rises slowly enough that it
remains in pressure equilibrium (essentially, that it moves subsonically, so that hydrostatic equilibrium
is maintained), but fast enough that it doesn’t exchange energy with its surroundings (i.e., that the cell
behaves adiabatically).

As the cell rises into a lower-pressure regime, it will expand in order to remain in pressure equilibrium
with its surroundings; this takes place on a dynamical timescale that is set by the speed of sound and the

1Perhaps better known for finding the first exact solutions to the field equations of Einstein’s general theory of relativity,
leading to the ‘Schwarzschild radius’ for the event horizon of nonrotating black holes.
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Figure 13.1: A (potentially) convective ‘blob’ in a stellar envelope, rising from radius r1 to r2, illustrating
the principles discussed in Section 13.1.

linear scale of the perturbation. However, the adiabatic cell will not necessarily remain in thermal
equilibrium with its surroundings; that is, the pressure in the cell will match that of the surrounding gas,
but, individually, the density and temperature need not. If the gas in the cell is less dense than its
surroundings, then simple buoyancy comes into play; the cell will continue to rise, and convective
motion occurs.2 If the cell is more dense than its surroundings, it will sink back down, and the system is
stable against convection.

The essence of the Schwarzschild criterion is, therefore, that instability occurs (rising cell less dense
than surroundings) if the adiabatic density decrease is greater than in the ambient medium:

|∆ρ|ad > |∆ρ|amb

(where the ‘ad’, ‘amb’ subscripts indicate adiabatic and ambient conditions, and we take absolute
values just so as not to have to worry about the meaning of inequalities of negative quantities should
they arise). In the limit of small changes, the density change can be written as

∆ρ =

(
dρ
dr

)
∆r

and so we can express this statement of instability as∣∣∣∣∣dρdr

∣∣∣∣∣
ad
>

∣∣∣∣∣dρdr

∣∣∣∣∣
amb

(13.1)

2Another way of looking at this is that the entropy (per unit mass) of the blob is conserved, so the star is unstable if the
ambient entropy per unit mass decreases outwards in the star.
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(since ∆r is the same for the cell and the ambient gas; Fig. 13.1).

Although eqtn. (13.1) captures the essential physics behind the Schwarzschild criterion, it more usual to
work in terms of temperature gradients (rather than density gradients). To this end, we use our
assumption of hydrostatic (pressure) equilibrium; the pressures inside the cell and in the ambient gas
are equal at both r1 and r2, so the changes in pressure must also be equal:

∆Pad = ∆Pamb.

However, P ∝ ρT (equation of state, eqtn. 2.4), so any increase in density must be matched by a
decrease in temperature, whence the temperature-gradient equivalent to eqtn. (13.1) (i.e., the condition
for convective instability) is∣∣∣∣∣dT

dr

∣∣∣∣∣
ad
<

∣∣∣∣∣dT
dr

∣∣∣∣∣
amb

. (13.2)

Finally, for practical applications it is convenient to express the temperature gradient in terms of
pressure change (rather than radius change)/ Again invoking the equation of hydrostatic equlibrium

dP(r)
dr

= −ρ(r) g(r) (2.1)

and the (gas-pressure) equation of state,

P = (ρkT )/(µm(H)) (2.4)

we can write∣∣∣∣∣dT
dr

∣∣∣∣∣ ≡ ∣∣∣∣∣dT
dP

dP
dr

∣∣∣∣∣
=

∣∣∣∣∣dT
dP

gρ
∣∣∣∣∣ (HSE)

=

∣∣∣∣∣dT
dP

∣∣∣∣∣ g
µm(H)

kT
P (EOS)

=

∣∣∣∣∣d ln T
d ln P

∣∣∣∣∣ g
µm(H)

k
. (13.3)

Substituting this into eqtn. (13.2) we obtain the condition for instability in yet another (and widely used)
form, ∣∣∣∣∣d ln T

d ln P

∣∣∣∣∣
ad
<

∣∣∣∣∣d ln T
d ln P

∣∣∣∣∣
amb

,

frequently written using the more compact notation

∇ad < ∇ (13.4)

(where ∇ is understood to mean ∇amb). This is the form in which the Schwarzschild criterion for
convective instability is often expressed. It tells us that if a superadiabatic temperature gradient exists
(i.e., if the actual temperature gradient exceeds the adiabatic value, which is given by eqtn. 13.5, below),
then convection will occur.
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13.2 When do superadiabatic temperature gradients actually occur?

Since large – potentially superadiabatic – temperature gradients will arise if the opacity is high
(eqtn. 12.6), one circumstance under which convection may occur is when the opacity is too high for
radiative transport to be efficient. To demonstrate this analytically we appeal to thermodynamic
arguments.

Under the adiabatic conditions appropriate to our rising cell,

PVγ = constant

where γ = CP/CV , the ratio of specific heats at constant pressure and constant volume. Thus, for a gas
cell of constant mass (for which V ∝ ρ−1),

P ∝ ργ; but also

P ∝ ρT, whence (2.4)

Pγ−1 ∝ T γ

or ∣∣∣∣∣d(ln T )
d(ln P)

∣∣∣∣∣
ad

=
γ − 1
γ

(13.5)

(which is one way of expressing the adiabatic temperature gradient). The Schwarzschild criterion for
convective instability,∣∣∣∣∣d ln T

d ln P

∣∣∣∣∣ > ∣∣∣∣∣d ln T
d ln P

∣∣∣∣∣
ad

[≡ ∇ > ∇ad] , (13.4)

can therefore be written as∣∣∣∣∣d ln T
d ln P

∣∣∣∣∣ > γ − 1
γ

[
≡ ∇ >

γ − 1
γ

]
. (13.6)

For example, convective energy transport must occur if the temperature gradient for radiative transport
is superadiabatic; i.e., if

3κRL(r)P
16πacT 4Gm(r)

>
γ − 1
γ

. (13.7)

(using eqtn. 12.8)

13.2.1 Physical conditions associated with convection

Equations(13.7) identifies several ways in which convection may, in principle, be induced – that is, to
achieve a superadiabatic temperature gradient.
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(i) If the luminosity is large, then the radiative flux may not be able to transport all the energy. An
example is the cores of massive stars, where the radiation flux per unit area, L(r)/4πr2, can be
very large, driving convection (in spite of quite small, electron-scattering, opacities).

(ii) Where the opacity κR is too great to allow the radiation to flow at an equilibrium rate (e.g.,
protostars).

(iii) In the envelopes of cool stars, where the adiabatic exponent γ can approach unity, and hence
(γ − 1)/γ can become very small (the γ effect; cf. eqtn. 13.7).

For a monatomic ideal gas (representative of stellar interiors),3 γ = 5/3 and so
(d ln T/d ln P)ad = 0.4 (eqtn. 13.5); but under changing conditions of ionization this exponent
changes. For a simple pure-hydrogen composition it can be shown that∣∣∣∣∣d ln T

d ln P

∣∣∣∣∣ =
2 + X(1 − X) ((5/2) + E1/(kT ))

5 + X(1 − X) ((5/2) + E1/(kT ))2

where

X =
ne

nP + n(H0)

is the degree of ionization and E1 is the ionization potential. For X = 0 or 1, this recovers
(d ln T/d ln P)ad = 0.4; but in regions of partial ionization lower values apply, with a minimum
at X = 0.5 [(d ln T/d ln P)ad = (γ − 1)/γ = 0.07] which occurs (e.g.) near the base of the solar
photosphere.

Additionally, rearranging and differentiating the equation of state P = nkT = (ρkT )/(µm(H)) gives

d ln T
d ln P

= 1 +
d ln µ
d ln P

−
d ln ρ
d ln P

, (13.8)

which demonstrates that large gradients in µ (i.e., in composition and/or degree of ionization) can also
influence whether or not convection occurs (separately to the effect of composition on the opacities).
Hence

(iv) Convection is facilitated by a strong µ gradient (eqtn. 13.8); this can come about when there is a
change in ionization (so the number of particles per unit mass changes) or composition (such as
may occur at the boundary between the core and envelope).

The switch from radiative core/convective envelope to convective core/radiative envelope occurs on the
main sequence at masses only very slightly more than the Sun’s. This is related to the core
energy-generation mechanism, as the principal hydrogen-burning process switches from proton-proton
chains (which generate energy at a rate that can be transported radiatively) to CNO processing.

3For stars supported by radiation pressure, the EOS obeys a ‘gas law’ with γ = 4/3, and (d ln T/d ln P) = 0.25

123



13.3 Convective energy transport: mixing-length ‘theory’

So far, we have only tested whether or not convection is likely to occur; we have not addressed how
energy is actually transported by this mechanism – i.e., we don’t yet know what the convective energy
flux actually is. Unfortunately, convection is a complex, hydrodynamic process. Although much
progress is being made in numerical modelling of convection over short timescales, at present it’s not
feasible to model convection in detail in stellar-evolution codes as a matter of routine, because of the
vast disparities between convective (∼dynamical) and evolutionary (∼nuclear) timescales. Instead, we
appeal to simple parameterizations of convection, of which mixing-length ‘theory’ is the most
venerable, and still the most widely applied.

We suppose that
(i) the envelope becomes convectively unstable at some radius r0, and that a convective cell then rises,
hydrostatically and adiabatically, through some characteristic distance ` – the ‘mixing length’;
(ii) the excess thermal energy of the cell is then released into the ambient medium; and
(iii) the cooled cell sinks back down (or, from another perspective, is displaced downwards by the next
rising cell).
Because we are moving energy from deeper to higher regions, the temperature gradient is shallower for
the cell than the pure radiative case (the upper layers are hotter than they would otherwise be).

From hydrostatic equilibrium (eqtn. 2.1) and the perfect gas equation (eqtn. 2.4) we have

dP
dr

= −gP
µm(H)

kT
, or

dP
P

= −g
µm(H)

kT
dr,≡ −

dr
H
. (13.9)

The solution of eqtn. (13.9) is

P = P0 exp (−r/H)

where H, the pressure scale height, is the vertical distance over which the pressure changes by a factor
e. The mixing length, `, is conveniently expressed in terms of this scale height; typically, we expect
` ' H, but, since the detailed physics is not well captured, a scaling factor (or fudge factor!) is usually
introduced, whereby

` = αH,

with α ∼ 0.5–1.5.

For simplicity (and given the weakness of other assumptions), we suppose that ` is the same for all
cells, and that the velocity of all cells is also the same.

For a cell moving with velocity 3 the flux of energy across unit area is given by the mass flux times the
heat energy per unit mass:

Fconv = ρ3 ×CP∆T (13.10)
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where CP is the specific heat at constant pressure and ∆T is the temperature difference between cell and
surroundings. To progress we need an estimate of the velocity 3, which we obtain by considering the
buoyancy force,

fb = −g∆ρ. (13.11)

Here ∆ρ is the density difference between the cell and ambient gas which we can determine from the
equation of state (P = (ρkT )/(µm(H)), eqtn. 2.4),

∆P
P

=
∆ρ

ρ
+

∆T
T
−

∆µ

µ
.

In hydrostatic (pressure) equilibrium ∆P = 0, whence

∆ρ

ρ
=

∆µ

µ
−

∆T
T

or

∆ρ = −ρ
∆T
T

(
1 −

∆µ

µ

T
∆T

)
,

→ −ρ
∆T
T

(
1 −

d ln µ
d ln T

)
so the buoyancy force, eqtn. (13.11), is

fb = gρ
∆T
T

(
1 −

d ln µ
d ln T

)
but force equals mass (per unit volume) times acceleration,

= ρ
d3
dt

so

d3
dt

= g
∆T
T

(
1 −

d ln µ
d ln T

)
(13.12)

where the excess temperature of the cell compared to the ambient gas can be written

∆T =

{∣∣∣∣∣dT
dr

∣∣∣∣∣
amb
−

∣∣∣∣∣dT
dr

∣∣∣∣∣
ad

}
× ∆r. (13.13)

For constant acceleration over distance `, starting from rest, the final velocity is given by Torricelli’s
equation,

3 =

√{
2

d3
dt
`

}
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so, substituting eqtn. (13.13) for ∆T in eqtn. (13.12) (setting ∆r = `, and neglecting a factor
√

2 by way
of a rough correction to go from final velocity to mean velocity), the required velocity is

3 =

{
g
T

∣∣∣∣∣1 − d ln µ
d ln T

∣∣∣∣∣}1/2 {∣∣∣∣∣dT
dr

∣∣∣∣∣
amb
−

∣∣∣∣∣dT
dr

∣∣∣∣∣
ad

}1/2

× `.

We can now rewrite eqtn. (13.10) as

Fconv = ρCP

{
g
T

∣∣∣∣∣1 − d ln µ
d ln T

∣∣∣∣∣}1/2 {∣∣∣∣∣dT
dr

∣∣∣∣∣
amb
−

∣∣∣∣∣dT
dr

∣∣∣∣∣
ad

}3/2

× `2.

Rearranging the equation of state, eqtn. (2.4),∣∣∣∣∣dT
dr

∣∣∣∣∣ =
gµm(H)

k

∣∣∣∣∣d ln T
d ln P

∣∣∣∣∣
=

T
H

∣∣∣∣∣d ln T
d ln P

∣∣∣∣∣ , =
T
H
|∇|

and so

Fconv = ρCP α
2T

{
gH

∣∣∣∣∣1 − d ln µ
d ln T

∣∣∣∣∣}1/2

{|∇|amb − |∇|ad}
3/2

which is our final formulation. Although it looks rather unwieldy, this form is useful in that everything
on the right-hand side is ‘known’ at each step in an iterative solution of a stellar-structure model.

In calculating actual temperature structures in stellar envelopes, we require the total energy flux to obey

F = Frad + Fconv = σT 4
eff

(outside the energy-generating core). In practice, in numerical modelling, the initial temperature
structure is calculated on the basis of radiative transfer only (Frad = σT 4

eff
), then a correction ∆T (r)

computed iteratively, for given α, if the Schwarzschild criterion indicates convective transport occurs.

13.4 Closing remarks

XXXVelocities, timescales, mixing length

Mixing-length theory was developed by Ludwig Prandtl (1875–1953), a pioneer in fluid dynamics, and
was introduced to stellar astrophysics in the 1950s by Erika Böhm-Vitense. There are several
formulations that differ in technical details, but they all share the same essential concepts, and the same
fundamental strengths and weaknesses:

The basic weakness is that the theory is purely local and stationary. The α parameter is normally
adjusted to produce models that are in agreement with observations, and in general only a global average

126



can be established (any dependencies on mass, depth, and composition are indeterminate, and the
empirical adjustment will tend to compensate for any other shortcomings in, or failings of, the models).

In reality, convection is turbulent, and is associated with a spectrum of cell sizes. This is a complex
hydrodynamic problem, so the basic strength of mixing-length theory is that it is straightforward to
implement computationally (and that it appears to do a reasonable job in practice).
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Section 14

Analytical stellar-structure models:
polytropes and the Lane–Emden equation

14.1 Introduction

We’ve already assembled a set of equations that embody the basic principles governing stellar structure;
these are

dm(r)
dr

= 4πr2ρ(r) Mass continuity; (2.5)

dP(r)
dr

=
−Gm(r)ρ(r)

r2 Hydrostatic equilibrium; (2.1)

dL(r)
dr

= 4πr2 ρ(r)ε(r) Energy continuity. (2.7)

Our aim is to use these to investigate (or to predict) the properties of real stars. To do this in detail we
also need descriptions of the quantities P, ε, and kR (pressure, energy-generation rate, and Rosseland
mean opacity), which enter these equations, directly or indirectly. These are each functions (often
complex functions) of density, temperature, and composition, and in modern work are computed
explicitly, separately from the stellar-structure problem itself. However, progress in analytical models
can be made simply by adopting an appropriate equation of state – discussed in the next section.

14.2 Polytropes

Historically, the idea of polytropes arose through modelling of fully convective gases, in which the gas
is completely turned over – hence polytropic (‘poly’, many, much; tropos, to turn).
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In the context of the Schwarzschild criterion (§13.1), convection may be assumed to occur rapidly
enough that a cell of gas doesn’t exchange heat with its surroundings, i.e., is adiabatic, so that PVγ is
constant. We can generalize this adiabatic equation of state to a polytropic equation of state, such that
the pressure is assumed to be proportional to density to some power (equivalent to PVγ = constant,
since V ∝ 1/ρ for fixed mass):

P = Kργ ≡ Kρ(n+1)/n, (14.1)

where K is the polytropic constant (of proportionality),
γ(≡ (n + 1)/n) is the polytropic exponent, and
n(≡ 1/(γ − 1) is the polytropic index (not to be confused with number-density n).

[In the case of adiabatic processes, γ is given by the ratio of specific heats, CP/CV; but in general, γ
need not have this direct physical interpretation. Indeed, eqtn. (14.1) need not necessarily even be taken
to be an equation of state (the Lane–Emden equation has applicability outside stellar structures) – it
simply expresses an assumption regarding the relationship between pressure and density.]

A sphere of gas satisfying eqtn. (14.1) is said to be a ‘polytrope of index n’. The importance of
polytropes is that they allow simple solutions to the equations of stellar structure; the Swiss astronomer
Jacob Robert Emden1 first developed the astrophysical applications,2 although the essential physics had
been described by the American astronomer Jonathan Lane in 1870. Superficially, the price is paid for
the simplifications offered by polytropic models is the apparent decoupling of pressure from
temperature in eqtn. (14.1); however, this turns out to be less restrictive than one might initially suppose
(as we shall see in Section 14.4). Of course, pressure is not actually independent of temperature (a
perfect-gas equation of state can hold in parallel with the polytropic EOS); rather, a relationship
between density and temperature in a form that allows the latter to be subsumed is implied.

14.3 The Lane–Emden Equation

We can now proceed with using results we’ve assembled so far to investigate stellar structure, using
polytropic models. The Lane–Emden equation represents a solution of the most basic of the equations
of stellar structure for such models, expressed in a dimensionless form.

We start with the equation of hydrostatic equilibrium,

dP(r)
dr

= −
Gm(r)ρ(r)

r2 ; (2.1)

1Emden was Karl Schwarzschild’s brother-in-law, and Martin Schwarzschild’s uncle.
2Emden 1907: Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf kosmologische und meteorologische Prob-

leme (‘Gas balls: Applications of the mechanical heat theory to cosmological and meteorological problems’).
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rearranging and differentiating gives

d
dr

(
r2

ρ

dP
dr

)
= −G

dm(r)
dr

whence, from mass continuity (dm/dr = 4πr2ρ(r); eqtn. 2.5)

1
r2

d
dr

(
r2

ρ

dP
dr

)
= −4πGρ, (14.2)

which already embodies the critical aspects of the Lane–Emden equation.3

Eqtn. (14.2) describes, in principle, how P, ρ vary with radius r in a star, but leaves us with one equation
for these two unknowns. We seek to eliminate one or other of these; therefore, having dealt with
‘mechanical’ issues, we now need to turn to the thermal structure. It might appear that we can’t solve
hydrostatic equilibrium without knowing something about the pressure, i.e., the temperature, which in
turn suggests needing to know about energy generation processes, opacities, and other complexities.
However, we can find interesting results by adopting a polytropic relationship between pressure and
density,

P = Kργ = Kρ(n+1)/n (14.1)

(thereby sidestepping the temperature dependence of pressure). Introducing eqtn. (14.1) into (14.2)
gives

K
r2

d
dr

(
r2

ρ

dργ

dr

)
= −4πGρ. (14.3)

We now have one equation with just one unknown; given some boundary conditions, we can therefore
now solve for ρ(r). If we wanted to do so now, we’d just use some sort of numerical integration. Before
the era of electronic computers, however, this approach was discouragingly laborious, so the pioneer
investigators of stellar structures sought to reduce eqtn. (14.3) to a non-dimensional form that could be
solved once and for all (for a given polytropic index).

We proceed in this direction by defining dimensionless scaled variables ξ and θ in place of the physical
variables r and ρ:

ξ = r/α, (14.4)

θn(ξ) = ρ(r)/ρc, (14.5)

3It’s also, essentially, Poisson’s equation in spherical co-ordinates; from hydrostatic equilibrium,

1
ρ

dP(r)
dr

= −g(r),=
dψ
dr

whence ∇2ψ = 4πGρ.
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where α is some constant having units of length, ρc is the central density, and our task now is to
determine θ as a function of ξ (equivalent to finding ρ as a function of r). Substituting our scaled
variables, eqtn. (14.3) becomes

K
(αξ)2

d
d(αξ)

 (αξ)2

ρcθn

d
(
{ρcθ

n}
(n+1)/n

)
d(αξ)

 = −4πGρcθ
n

which looks moderately intimidating; but since

d
dξ

(θn+1) = (n + 1)θn dθ
dξ

it reduces to

(n + 1)Kρ(1−n)/n
c

4πGα2

1
ξ2

d
dξ

(
ξ2 dθ

dξ

)
= −θn.

This is still ‘symbol soup’ to some extent, but by setting the constant α (which is freely selectable,
provided its dimensionality – length – is preserved) to be

α ≡

 (n + 1)Kρ(1−n)/n
c

4πG


1/2

, (14.6)

we obtain a compact second-order differential equation relating (scaled) radius to (scaled) density:

1
ξ2

d
dξ

(
ξ2 dθ

dξ

)
= −θn

[
= −

ρ

ρc

]
(14.7)

which is the standard form of the Lane–Emden equation.4

14.3.1 Solutions

The Lane–Emden equation is, in essence, a dimensionless form of eqtn. (14.3), and its solutions give us
density as a function of radius, for appropriate boundary conditions. Because it is a second-order
differential equation, we need two boundary conditions in order to solve it.

A first is obtained trivially from the definition of θ; at the core,

θ(ξ = 0)
[
=
ρ

ρc
(r = 0)

]
= 1.

Furthermore, the density gradient at the core must be zero (if we go ‘inwards’ the density increases,
then after we pass through the centre it decreases); dρ/dr = 0 as r → 0, so

dθ
dξ

∣∣∣∣∣
ξ=0

= 0

(where the suffix indicates that the derivative is evaluated at ξ = 0).
4If desired, we can expand this to

1
ξ2

(
2ξ

dθ
dξ

+ ξ2 d2θ

dξ2

)
+ θn =

d2θ

dξ2 +
2
ξ

dθ
dξ

+ θn = 0.
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With these boundary conditions, analytical solutions describing the entire run of θ with ξ are possible
for polytropic indexes n = 0, 1 and 5 (i.e., γ = ∞, 2, and 1.2); these are, respectively,5

θ(ξ) = 1 − ξ2/6

= sin ξ/ξ

=
(
1 + ξ2/3

)−1/2


ξ1 =

√
6

= π

= ∞


where ξ1 is the first root of θ (i.e., the smallest positive value of ξ for which θ = 0) – that is, the rescaled
radius of the star, R/α.

Solutions of the Lane–Emden equation for other values of n can’t be expressed as analytical functions
of ξ in this way, but are straightforward to compute by simple numerical integration. These solutions
are normally given just in terms of surface (‘ξ1’) values of ξ and dθ/dξ (or −ξ2 dθ/dξ), as in the
following table (which I calculated using a very simple numerical integration):

Solutions of the Lane–Emden Equation

n ξ1 −ξ2
1

dθ
dξ

∣∣∣∣
ξ1

0.0 2.4495 4.8990
0.5 2.7527 3.7887
1.0 3.1416 3.1416
1.5 3.6538 2.7141
2.0 4.3529 2.4111
2.5 5.3553 2.1872
3.0 6.8968 2.0182
3.5 9.5358 1.8906
4.0 14.972 1.7972
4.5 31.836 1.7378
5.0 ∞ 1.7321

5Details of the solutions are available at, e.g., http://mathworld.wolfram.com/Lane-EmdenDifferentialEquation.html
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Solutions of the Lane–Emden equation for several values of the polytropic index n (increasing left to right). Black

dots show the first root of θ (ξ1, corresponding to the stellar radius) for each value of the polytropic index n.

A polytrope with index n = 0 has a uniform density (recall ρ/ρc = θn), while a polytrope with index
n = 5 has an infinite radius. In general, the larger the polytropic index, the more centrally condensed the
density distribution; and only polytropes with n ≤ 5 are bound systems (Section 14.5). A polytrope with
index n = ∞ has P(= Kρ(1+1/n) = Kρ and is a so-called ‘isothermal sphere’, a self-gravitating,
isothermal body – used to analyse collisionless systems of stars (in particular, globular clusters).

A thermodynamic aside

Any thermodynamic process that obeys P = Kργ is called a polytropic process. By inspection,
γ = 0 corresponds to an isobaric (constant-pressure) process, and
γ = ∞ is an isochoric (constant-volume) process.
If the process involves a constant ratio of energy transfer as heat to energy transfer as work
(δQ/δW = constant), then the perfect-gas equation of state applies (PG = nkT ; eqtn. 2.4), in which case
γ = 1 is an isothermic process, and
γ = CP/CV is an adiabatic process.
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A perfect-gas EOS can be applied in polytropic models of stars. Then

ρ

ρc
=

(
P
Pc

)1/γ

=

(
ρT
ρcTc

)1/γ

; i.e.,(
ρ

ρc

)(γ−1)/γ

=

(
T
Tc

)1/γ

= θ1/γ, or

T
Tc

= θ (14.8)

Thus θ can be seen as reflecting density or temperature (or pressure) as a function of radius.

14.3.2 Relating scaled variables to physical stellar parameters

The solution of Lane–Emden equation depends only on the polytropic index, n, but is expressed in
terms of scaled parameters. If we want to obtain astrophysically more interesting solutions (in terms of
actual stellar masses, radii, etc.) then we need two physical parameters to transform from the scaled
ones. We might choose actual numerical values for K and ρc, for example; we can then evaluate:

• The stellar radius,

R ≡ αξ1 (14.4)

=

{
K(n + 1)

4πG

}1/2

ρ(1−n)/(2n)
c ξ1 (14.9)

(from eqtn. 14.6).

• The stellar mass,

M =

∫ R

0
4πr2ρ dr

but r = αξ (eqtn. 14.4) and ρ = ρcθ
n (eqtn. 14.5), so

M = 4πα3ρc

∫ ξ1

0
ξ2θn dξ;

then using the Lane–Emden equation, (14.7), for θn,

M = −4πα3ρc

∫ ξ1

0

d
dξ

(
ξ2 dθ

dξ

)
dξ

= 4π
{

K(n + 1)
4πG

}3/2

ρ(3−n)/(2n)
c

{
−ξ2

1
dθ
dξ

∣∣∣∣∣
ξ1

}
(14.10)
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• The mean stellar density,

ρ =
3M

4πR3

= ρc
3
ξ3

1

{
−ξ2

1
dθ
dξ

∣∣∣∣∣
ξ1

}
, (14.11)

(where we use our previous results, eqtns. 14.10 and 14.9 for M and R).

• The central pressure can be expressed trivially as

Pc = Kρ(n+1)/n
c , (14.1)

Should we want these results expressed in terms of stellar mass and radius, we need to find K, ρc in
terms of these parameters. We first rearrange eqtn. (14.11) to obtain

ρc =
M

4πR3 ξ1

{
−

dθ
dξ

∣∣∣∣∣
ξ1

}−1

,

or, numerically,

ρc = 4.70 × 102 ξ1

{
−

dθ
dξ

∣∣∣∣∣
ξ1

}−1 (
M

M�

) (
R

R�

)−3

kg m−3

Eliminating ρc between eqtns (14.9) and (14.10) we obtain K in terms of M and R:

K =
G

n + 1
(4π)1/n ξ−(n+1)/n

1

{
−

dθ
dξ

∣∣∣∣∣
ξ1

}(1−n)/n

M(n−1)/nR(3−n)/n,

=
G

n + 1

 4π

ξ(n+1)
1

{
−

dθ
dξ

∣∣∣∣∣
ξ1

}(1−n)1/n

M(n−1)/nR(3−n)/n. (14.12)

Then the central pressure, in terms of mass and radius, is

Pc =

4π(n + 1)
{
−

dθ
dξ

∣∣∣∣∣
ξ1

}2−1
GM2

R4 (14.13)

= 8.96 × 1013

(n + 1)
{
−

dθ
dξ

∣∣∣∣∣
ξ1

}2−1 (
M

M�

)2 (
R

R�

)−4

Pa

(matching the functional form Pc ∝ M2/R4 found previously from simpler considerations; eqtn. 11.6).

The core temperature can be estimated from the central pressure and density, if we know the equation
of state. In general, it isn’t safe to assume that the dominant pressure is gas pressure; radiation pressure
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also needs to be considered, and we’ll address this in Section 14.4.2. However, if (but only if) gas
pressure dominates, then we can just use the perfect-gas equation of state,

TC '
µm(H)

k
Pc

ρc

=
µm(H)

(n + 1)k

{
−ξ

dθ
dξ

∣∣∣∣∣
ξ1

}−1 GM
R

=
2.29 × 107µ

(n + 1)

{
−ξ

dθ
dξ

∣∣∣∣∣
ξ1

}−1 (
M

M�

) (
R

R�

)−1

K

14.4 Astrophysical Solutions

We’ve done a lot of algebra; what about the physical interpretation of all this? Recall that the
Lane–Emden equation is the solution of the equations of hydrostatic equilibrium and mass continuity,
for a polytropic equation of state, expressed in dimensionless form. We might therefore reasonably ask
what, if any, types of star can be reasonably modelled as polytropes.

14.4.1 Stars with fully convective energy transport

The first law of thermodynamics states that the change in internal energy of a system, dU, is given by
the heat added to the system, dQ, less the work done by the system, dW:

dU = dQ − dW.

For fully convective stars, all the convective cells are supposed to be adiabatic, so dQ ≡ 0; and for a
quasistatic process dW = PdV , whence

dU = −PdV.

For an ideal gas6

P = nkT =
N
V

kT (where N = nV) and so

U =
3
2

NkT →
3
2

VP

6A gas is close to ideal if it is fully ionized, or entirely neutral. If the gas is partially ionized, then some energy may go into
ionization/dissociation, and U , 3/2NkT .
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so that

dU = −PdV;

d
(
3
2

PV
)

= −PdV;

3
2

(PdV + VdP) = −PdV;

5
2

PdV = −
3
2

VdP;

dP
P

= −
5
3

dV
V

;

P ∝ V−5/3, but V ∝ ρ−1 so

P ∝ ρ5/3. (14.14)

That is, fully convective stars are approximately polytropic, with n (= 1/(γ − 1)) = 3/2.

or. . .

In a fully convective star, P ' PG (i.e., radiation pressure is unimportant); then, from
P = (ρkT )/µm(H), we have T ∝ (P/ρ).

If we have an adiabatic temperature gradient

(
∂T
∂P

)
≡ ∇ad → P ∝ T 1/∇ad

so

P1−(1/∇ad) ∝ ρ−1/∇ad , or

P = Kρ1/(1−∇ad)

(and for a perfect gas, P ∝ ρ5/3).

14.4.2 The ‘Eddington Standard Model’

The total pressure P is the sum of gas pressure PG and radiation pressure PR,7 where

PG =
ρ

µm(H)
kT, and (2.4)

PR =
1
3

aT 4. (3.21)

We define

PG ≡ ηP (or, equivalently, PR ≡ (1 − η)P); (14.15)

7Plus degeneracy pressure, which is negligible for normal stars.
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we can therefore write

P =
PG

η

=
ρkT

ηµm(H)
.

Rearranging for T , substituting the result into eqtn. (3.21), and inserting the result into eqtn. (14.15)
gives

P4
(
ηµm(H)
ρk

)4

=
3(1 − η)

a
P

i.e.,

P =

{
k

µm(H)

}4/3 {
3(1 − η)

aη4

}1/3

ρ4/3; (14.16)

thus if η and µ are constant throughout a star then

P ≡ Kρ4/3 (14.17)

and the star is a polytrope with polytropic index n = 3. The behaviour of n = 3 polytropes was
investigated by Eddington, and is embodied in the ‘Eddington Standard Model’.

The assumption of constant µ through the star is likely to be tolerable, at least for main-sequence stars,
but is constant η plausible? Since PR = 1

3 aT 4 (eqtn. 3.21), we have

dT
dPR

=
3

4aT 3 ;

but we know that radiative energy transport is described by

dT
dP
≡

dT
dPR

dPR

dP
= −

3κRL(r)
16π acT 3 Gm(r)

, (12.7)

so

dPR

dP
=

κRL(r)
4πcGm(r)

.

Integrating gives8

PR

P
'

κRL
4πcGM

8The astute student may note the connection with the Eddington limit to luminosity: LEdd = (4πcGM)/κ, eqtn. (3.22)
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assuming negligible surface pressure and that κR is constant with radius r (not unreasonable for hot
stars). That is, for stars where energy transport is radiative, there is a constant ratio of gas pressure to
radiation pressure (i.e., constant η), and so the Eddington model is indeed applicable.

[Kramers opacity law has κR ∝ T−3.5 while the proton–proton chain leads to L/M ∝∼ T +3.5; thus
κRL/M ' constant for a range of stars of different masses.]

Some results for the Eddington model (n = 3, constant η) are set in Problem Sheet 4. We note one
additional result, namely that from eqtns. (14.16) and (14.17) we have

K ∝
{

(1 − η)
η4

}1/3

[where PR = (1 − η)P], while from eqtn. (14.10), with n = 3

K ∝ M2/3;

that is,{
(1 − η)
η4

}
∝ M2.

This shows us that as M increases, η decreases (the left-hand side is a monotonically decreasing
function of η) – that is, with increasing mass, radiation pressure becomes increasingly important. While
stars like the Sun are largely supported by gas pressure, the most massive stars are almost entirely
supported by radiation.

14.4.3 Degenerate stars as polytropes

White dwarfs are supported by electron degeneracy pressure (or ‘Fermi pressure’), and neutron stars by
neutron-degeneracy pressure, so we anticipate an equation of state that is independent of temperature.
The uncertainty principle tells us that, in general,

∆p∆x ≥ ~/2

where p is the momentum and x is some spatial co-ordinate. Heuristically, using electron degeneracy as
an example, the electron momentum must be of the order of, or at least scale with, the uncertainty, i.e.,

pe ∝∼ ~/∆x.

If the electron density is ne then the average spacing between electrons is of order

∆x ∝ n−1/3
e , so

pe ∝ ~n
1/3
e
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Non-relativistic case. The electron momentum is pe = mev; i.e.,

v ∝ n1/3
e .

The (electron-degeneracy) pressure – momentum per unit area per unit time – is

Pe ∼ p · ne · v; that is,

Pe ∝ n5/3
e , ∝ ρ5/3,

a polytrope of index n = 3/2. Detailed calculations give the constant of proportionality.

Pe,n =
h2

20mem(H)µe

(
3

πm(H)µe

)2/3

ρ5/3

≡ K1ρ
5/3 (14.18)

(where µe is the mean number of nucleons per electron).

Relativistic case. In the relativistic limit v ' c, so

Pe ∼ ne · c · p; i.e.,

Pe ∝ ρ
4/3,

or in detail

Pe,r =
hc

8m(H)µe

(
3

πm(H)µe

)1/3

ρ4/3,

≡ K2ρ
4/3 (14.19)

so that relativistic degenerate stars are also polytropic, though with a different polytropic index (n = 3).

XXX Compare Maxwell-Boltzmann distribution for momentum (velocity) in a non-degenerate gas with
the distribution for degenerate gas (w/Fermi momentum).

14.4.4 Mass–radius relation: application to white dwarfs

In § 14.3.2, the central density, ρc, was eliminated between equations (14.9) and (14.10) to give

M(n−1)/nR(3−n)/n = K
/

 4π

ξ(n+1)
1

(
−

dθ
dξ

∣∣∣∣∣
ξ1

)(1−n)1/n
 (14.12)

The right-hand side has a constant numerical value that depends only on the polytropic index. We see
that polytropes therefore follow a mass–radius relationship,

M ∝ R(n−3)/(n−1).
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We know that non-relativistic white dwarfs are polytropes with P ∝ ρ5/3 (i.e., n = 3/2; Section 14.4.3),
whence M ∝ R−3. Using eqtn. (14.18) in eqtn. (14.12), and inserting numerical values, we obtain a
quantitative mass-radius relation for non-relativistic white dwarfs,

R =
K1

0.4242GM1/3 , or

R
R�
' 10−2 M

M�

−1/3
,

showing that when a star like our Sun becomes a white dwarf it will have about the same radius as that
of the Earth (∼6000 km), and hence a density of ∼ 109 kg m−3.

With increasing mass, the radius decreases, and the density rises, eventually entering the relativistic
regime. (As the particles get squeezed into smaller and smaller volumes, the uncertainty principle
implies that the velocities are larger and larger.) Then

P = Pe,r = K2ρ
4/3,

where

K2 =
hc

8m(H)µe

(
3

πm(H)µe

)1/3

ρ4/3 (14.19)

Using eqtn. (14.19) in eqtn. (14.12), and inserting numerical values,

M =

( K2

0.3639G

)3/2

= 1.142 × 1031µ−2
e kg,

= 5.74µ−2
e M�

This is the ‘Chandrasekhar mass’, the maximum mass that can be supported by relativistic degeneracy
pressure (recall, we obtained eqtn. 14.19 by setting v ' c, so this is a strong upper limit); for a helium
white dwarf the number of nucleons per electron is µe ' 2, and so MCh ' 1.44M�. A star more massive
than the Chandrasekhar limit that has no other significant sources of pressure will continue to collapse,
to a neutron star (supported by neutron degeneracy pressure) or to a black hole.9

14.4.5 An alternative look at the mass-radius relation: white dwarfs [not for
lectures]

The kinetic energy of a particle of mass m, velocity 3, is

Ep =
1
2

m32;

9The equation of state for nuclear matter is not well established, so that the upper limit for a neutron-star mass – the
‘Tolman–Oppenheimer–Volkoff limit’ – is less certain than is the Chandrasekhar limit. The most accurate determinations of
neutron-star masses (from binary-star systems) are all remarkably close to 1.4M�, but with a range of ∼1–2M�.
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and the uncertainty principle tells us that

∆x∆p ≥ ~/2

where p is the momentum and x is some spatial co-ordinate such that

∆x3 = V/N

for a star of volume V containing N particles. That is, the uncertainty principle shows us that

p2 ∝ ~2N2/3/R2

whence the total kinetic energy of the entire star (∝ N) is

E∗ ∝ (~2N5/3)/(mR2)

The star is in equilibrium when the kinetic energy equals the gravitational energy; that is, when

(~2N5/3)/(mR2) ∝ M5/3/R2 ' GM2/R,

or

R ∝ M−1/3

as before.

As the mass increases the radius gets smaller, so we must eventually enter the relativistic regime (∆x
decreases so ∆p increases). The relativistic form for the energy in the limit 3→ c is

Ep = pc;

then repeating the arguments from above leads to

M2/3 ≈ ~cm−4/3
p /G ' 1.4M�.

That is, the maximum mass of a star that can be supported by electron degeneracy pressure depends
only on physical constants, and not on any other property of the star.

14.5 Binding energy [not for lectures]

It’s of interest also to investigate the total energy of a polytrope. We start by considering the
gravitional potential energy; this is given in the usual way by

Ω = −

∫ s

c

Gm
r

dm (14.20)

≡ −

∫ s

c

G
2r

d(m2)

(where the c, s limits mean ‘centre’ and ‘surface’). Integrating by parts,

Ω = −
GM2

2R
−

∫ s

c

Gm2

2r2 dr,
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but from hydrostatic equlibrium, dr = −(r2dP)/(Gmρ), so this can be written as

Ω = −
GM2

2R
+

∫ s

c

��Gmm

2��r2

��r2

��Gm
dP
ρ
. (14.21)

We now use the polytropic equation of state,

P = Kργ = Kρ(n+1)/n, (14.1)

to obtain

dP
dρ

= K
n + 1

n
ρ1/n;

we also use the trick of writing eqtn. (14.1) as

P
ρ

= Kρ1/n

to write

d (P/ρ)
dρ

=
K
n
ρ(1−n)/n

d (P/ρ)

��dρ
=

dP
ρ��dρ

1
n + 1

; i.e.,

dP
ρ

= (n + 1) d (P/ρ)

Substituting back into eqtn. (14.21) gives us

Ω = −
GM2

2R
+

n + 1
2

∫ s

c
m d (P/ρ);

integrating by parts for a second time,

= −
GM2

2R
+

[
n + 1

2
m

P
ρ

]s

c
−

n + 1
2

∫ s

c

P
ρ

dm.

The term in [brackets] vanishes (m = 0 at the centre, P/ρ = 0 at the surface), so, using mass
continuity (eqtn. 2.5),

Ω = −
GM2

2R
−

n + 1
2

∫ s

c

P
ρ

4πr2ρ dr

= −
GM2

2R
−

n + 1
2

∫ s

c
P

4π
3

dr3.

Integrating by parts yet again,

Ω = −
GM2

2R
−

[
n + 1

2
4π
3

Pr3
]s

c
+

n + 1
6

∫ s

c
4πr3 dP.

The second term again vanishes rc = 0, Ps = 0); then, using the equation of hydrostatic equilibrium
once more,

Ω = −
GM2

2R
−

n + 1
6

∫ s

c
4πr3 Gmρ

r2 dr,
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and mass continuity,

Ω = −
GM2

2R
−

n + 1
6

∫ s

c

Gm
r

dm

– but the integral is the definition of Ω (eqtn. 14.20) that we started with! That is,

Ω = −
GM2

2R
−

n + 1
6

Ω, or

Ω =

(
3

n − 5

)
GM2

R
.

We can then appeal to the virial theorem to obtain the total energy,

E = Ω + U =
1
2

Ω =

(
3

n − 5

)
GM2

2R
.

We see that for n > 5 the energy is E > 0, meaning the system is unbound; only polytropes with
n < 5 are gravitationally bound, and hence potentially of interest as stellar models.

14.5.1 Summary of ∼polytropic stars

To summarize, the following systems are reasonably approximated as polytropes:
– convective stars

P ∝ ρ5/3 n = 1.5. (14.14)

– stars with constant η (∼radiative stars)

P ∝ ρ4/3 n = 3; (14.17)

– non-relativistic white dwarfs,

Pe,n ∝ ρ
5/3 n = 1.5; (14.18)

– relativistic white dwarfs,

Pe,r ∝ ρ
4/3 n = 3; (14.19)
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Section 15

Pre-main-sequence evolution

THIS SECTION UNDER DEVELOPMENT

15.1 Introduction: review

We now turn to evolution of stars. We’ll divide this into three broad sections, namely
– Pre-main-sequence evolution;
– Main-sequence evolution; and
– Post-main-sequence evolution.

We’ll adopt a definition of ‘main-sequence evolution’ as being phases when core hydrogen burning is
powering the stars. In this section, we’ll consider the stages of development prior to this.

The general principles of star formation (and associated planetary-system formation) can be traced back
as far as the 18th-century ideas of Emanuel Swedenberg, Immanual Kant, and Pierre-Simon Laplace.
Their ‘nebular hypothesis’ already contained the key concepts that underpin current star-formation
theories: a cloud of gas may collapse under gravity, forming a spinning disk (through conservation of
angular momentum) with high central densities that eventually lead to the emergence of a star.

We can directly observe objects representing the different stages of the star-formation process. On
scales of parsecs and up, we see the giant molecular clouds which may be subject to gravitational
collapse. This gives rise to high-density ‘molecular cores’ (on sub-parsec scales). As a zeroth-order
approximation, we can view these gravitationally collapsing gas clouds as being in more or less free-fall
collapse, radiating away much of their initial potential energy on a dynamical timescale (so that
collapse is approximately isothermal).
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15.2 Initial cloud collapse: Jeans mass (should be PHAS0018 review)

Observationally, we know that stars form from interstellar matter, typically in groups (clusters and
associations). The essential physical process is evidently one of gravitational collapse, which occurs on
a dynamical timescale. However, because the densities are low, even in the ‘dense’ clouds associated
with star formation (n ∼ 104 cm−3,∼ 10−17kg m−3), even this timescale is quite long (∼ 106 yr).

We’ll consider collapse from a simple, idealised perspective. The internal (thermal) energy of our initial
system is

U =
3
2

NkT

where N is the total number of particles, nV . The gravitational potential energy is

Ω = − f
GM2

R
where f is a factor, of order unity, that depends on the mass distribution; for uniform density, f = 3/5

(box 15.1; more centrally condensed systems yield larger values of f ). So, the Virial theorem
(2U = −Ω) for an initially uniform gas cloud becomes

3NkT =
3
5

GM2

R
If the equality actually holds (i.e., if the ‘virial ratio’, |U/Ω| is 0.5), then the system is in virial
equilibrium (and nothing much happens). If the left-hand side is larger, thermal energy exceeds the
gravitational potential energy, and the cloud disperses. If the right-hand side is greater, gravity wins,
and the cloud collapses under gravity. Thus our condition for collapse is therefore

3NkT <
3
5

GM2

R
. (15.1)

For mean density ρ and cloud mass M, the corresponding characteristic length scale is

R =

(
3M
4πρ

)1/3

(smaller clouds collapse) and, substituting N = M/(µm(H)), eqtn. (15.1) can be written as

M >

(
5kT

Gµm(H)

)3/2 (
3

4πρ

)1/2

,≡ MJ. (15.2)

This is the constraint on cloud mass required for collapse. This sort of argument was first put forward
by Sir James Jeans, and the critical mass MJis therefore known as the Jeans mass, MJ. We see that
MJ ∝ T 3/2ρ−1/2; hence the easiest clouds to collapse are cold, dense ones (typically, dense molecular
clouds).

[Jeans himself derived this limiting mass by supposing that a cloud collapses if the sound-crossing time
is greater than the free-fall time. Jeans’ original argument was actually flawed, but his general results
still provides a useful rule of thumb indicating whether or not a given system is liable to collapse.]
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Sizes, timescales, luminosities

We can also arrange eqtn. (15.1) to solve for the corresponding radius,

RJ =

(
15
4π

kT
Gµm(H)ρ

)1/2

where RJ is called the Jeans length – the radius of a uniform-density cloud that contains the Jeans mass.
At the specified density and temperature, larger (i.e., more massive) clouds will collapse.

From the Virial theorem, half the change in gravitational potential energy is radiated away. A cloud in
free-fall is not virialized, but if completely optically thin will radiate away all the released gravitational
potential energy. In any event, we can get an order-of-magnitude handle on the luminosity of the
collapsing cloud as

1
2

dΩ

dt
, =

1
2

dΩ

dR
dR
dt
,'

GM2
J

R2
J

dR
dt

(from Ω ' GM2/R). To get a crude estimate of dR/dt, we just divide the Jeans length by the free-fall
time (which is (Gρ)−1/2; eqtn. 11.2):

dR
dt
' RJ

√
Gρ,

whence the luminosity is, roughly,

L '
GM2

J

RJ
(Gρ)1/2

Using these results, we find that a Jeans-mass molecular cloud with n ' 104 m−3, T ' 20 K, µ ' 2 has
MJ ' 20 M�,
RJ ' 0.2 pc (∼ 107 R�),
τff ' 106 yr (independent of temperature), and
L ' 10−3 L� (independent of density).
Such objects are cold and faint, and may be seen as dark clouds (‘Bok globules’, named for Bart Bok, a
Dutch-American astronomer who conducted early investigations in this field).

15.3 Protostars: initial phases

15.3.1 Implications for star formation: fragmentation

An astrophysically interesting implication of our Jeans-mass analysis follows from considering
changing circumstances during collapse. We’ve just seen that

MJ ∝ T 3/2ρ−1/2.
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As the cloud collapses, then ρ must increase (same mass in smaller volume); and we’d expect the
temperature to increase (partial conversion of gravitational potential energy to thermal energy).

The Jeans mass will therefore change during collapse. If it were to decrease, then any substructure
within the region with mass in excess of the new MJ will start its own distinct collapse within the larger
region – that is, the cloud will fragment whenever T 3/2ρ−1/2 decreases.1

During the initial phases of collapse, conditions will not be too far from isothermal – rising
temperatures promotes molecular hydrogen into excited rotational levels. Subsequent de-excitation
results in the emission of photons, mainly at long wavelengths – IR and mm – where cloud is
transparent. The escaping photons carry away energy, cooling the cloud. Since T ∼ constant, the
increase in density results in fragmentation.

Once the (core of) the cloud becomes optically thick, conditions switch from roughly isothermal to
roughly adiabatic. The increasing gas pressure – together with turbulence – stops collapse, and
fragmentation.

The assumption of adiabaticity, together with the perfect-gas and polytropic equations, lead to
T ∝ ρ(γ−1). Fragmentation requires decreasing T 3/2ρ−1/2, corresponding to an adiabatic index γ < 4/3.
If the collapsing gas cloud can radiate away enough thermal energy to remain approximately
isothermal, γ = 1, and we expect fragmentation to occur; at later phases, the increasing density will
result in greater optical depths, and γ will increase.

Fragmentation is (one reason) why giant molecular clouds don’t collapse to single supermassive stars;
but the physics poses some problems, too. Naïve considerations based on the foregoing arguments
suggest that fragmentation should set an upper limit on stellar masses of order 10 M�, but we know that
in reality stars form to much higher masses (∼ 102 M�). The origin of high-mass stars is therefore a
major focus of research into star formation.

What actually causes a molecular cloud to collapse? Observationally, star formation is observed to be
triggered by density waves in spiral galaxies, or sequentially by (presumably) supernova blast waves.

And do be aware that collapse is by no means isotropic; even if we start with uniform density, the
inevitable consequence of collapse is that the central regions quickly become denser.

Conservation of angular momentum means that collapse will be favoured along the ‘rotation’ axis
(magnetic fields may also have an influence). Hence the fragment flattens as it collapses, giving rise to a
disk-like configuration with a well-defined, dense central condensation: our protostar.

The accepted picture is that the disk may accrete further material from the surrounding molecular cloud,
and feeds material onto the protostar.

1Hoyle 1953 ApJ 118 513. This is a considerable simplification of the relevant physics; a more complete analysis would
include the effects of turbulence and magnetic fields.
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Start with prestellar core, ∼ 0.1 pc, n ∼ 105 cm−3, T ∼ 10K. Not always easy to distinguish true
prestellar cores from transient density enhancements. ‘Larson’s laws’ (1969–1981):

1. Velocity dispersion (line width) is proportional to cloud size: σ ∝∼ r0.4. This is the signature
expected of turbulence (and is similar to the Kolmogoroff Law for turbulence of small eddies
super-imposed on larger ones).

2. Velocity dispersion is proportional to cloud mass: σ ∝∼ M0.2, and

3. Cloud size is inversely proportional to density: n ∝∼ r−1.1.

At densities of n ∼ 1012cm−3 (ρ ∼ 10−13g cm−3) the core becomes optically thick to its own sub-mm
emission, and switches from ∼isothermal to ∼adiabatic behaviour. The Jeans mass at this density
defines a minimum mass, called the opacity limit for fragmentation (Low and Lynden-Bell 1976; Rees
1976); it corresponds to a mass of ∼ 0.01M�. Collapse now proceeds on a Kelvin-Helmholtz timescale
(fragmentation stops as the stars starts to heat).

Protostellar objects classified according to SEDs (related to long-wavelength excess over ∼b-b
radiation, resulting from reprocessing). Relative lifetimes from relative frequencies.

Class 0: central object still has much of its final mass to accrete; surrounding envelope still substantial.
T . 70K, cold bb flux distribution peaking at ∼ 100µm, τ . 105 yr.

Class I: central object nearly complete (more mass in protostar than surrounding accretion zone),
envelope settling onto disk; large IR excess. T . 650K, peaking at ∼10s of µm, τ ∼ few105 yr.

Class II: T . 2800K, emission peaks in ∼ µm band, with a large IR excess (from disk). Envelope fully
is more or less settled onto the disk. At ∼2000K, moilecular hydorgen dissociates. Evolution becomes
almost isothermal again, as most of the released potential energy goes into dissociating H2 (rather than
heating the gas). As a result of this ‘second collapse’ phase, the protostar collapses rapidly, to ∼ stellar
densities. Now categorised as a ‘pre-main-sequence’ (PMS) object. The result is a classical T-Tauri star
(CTT; or their more massive counterparts, Herbig Ae/Be stars), τ ∼ few106 yr. A large fraction of CTTs
show (protoplanetary) accretion discs.

Class III: modest IR excess, weak-lined T-Tauri (WLTT) stars, , τ ∼ few107 yr.

Returning to the simple picture, toward the end of this contraction phase, central temperatures reach
∼ 104 K, and hydrogen begins to ionize. This is a phase change, and during phase changes, temperature
remains constant. As a result, further contraction of the cloud rapidly increases its density and pressure,
and the cloud goes into a rapidly accelerating free fall which reduces its size by a factor of ten or more,
hence decreasing its volume by a thousand or more times, and increasing its density by a thousand or
more times, on a timescale of decades. Within those few years, the clouds changes from a large, cool
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cloud of gas, radiating only infrared radiation, to a much smaller, denser, hotter cloud of ionized gas,
radiating much larger amounts of infrared and visible light – a protostar.

The Virial Theorem tells us how a virialized system responds to changing conditions, namely

∆U = −
∆Ω

2
.

Thus as a gas cloud contracts it gets hotter (U becomes more positive as Ω becomes more negative; that
is, as the system becomes more tightly bound). Only half the change in Ω has been accounted for; the
remaining energy is ‘lost’ – in the form of radiation. This occurs on a Kelvin–Helmholtz timescale.

As the temperature rises, first molecules (principally H2) dissociate, then ionization of hydrogen and
helium occurs. Eventually, hydrostatic equilibrium is established as a result of rising pressure, and the
collapsing gaseous condensation has become a protostar.

We can therefore roughly estimate the properties of the protostar by supposing that all the available
gravitational potential energy initially released in collapse (from infinity to some protostellar radius Rps)
is used in dissociation and ionization; that is, that

GM2

Rps
'

M
m(H)

(X
2
· χ(H2) + X · χ(H) +

Y
4
· χ(He)

)
(15.3)

(neglecting some factors, such as µ, of order unity), where
X,Y(' 1 − X) are the abundances by mass of hydrogen and helium,
χ(H2) is the dissociation energy of molecular hydrogen (4.5 eV), and
χ(H), χ(He) are the ionization potentials of hydrogen and helium (13.6 eV, and 24.6+54.4 eV), giving

Rps

R�
'

40
(1 − 0.2X)

M
M�

(15.4)

∼ 50 for a solar-mass star.

In reality, additional energy is lost through other mechanisms (radiation, outflows etc.), and this ‘back
of the envelope’ calculation significantly overestimates Rps. Nevertheless, it provides us with a simple,
if crude, estimate of the maximum radius for a protostar as it begins its evolution. We can also estimate
the average internal temperature, from the Virial theorem,

T '
µm(H)

3k
GM
Rps

∼ 105 K.

Even though the core is hotter than this mean value, temperatures are not high enough, at this stage, to
ignite hydrogen fusion.

The opacity is high at this stage (largely due to H−), as is the luminosity. As a consequence, the system
is effectively fully convective, and can therefore be well approximated by a polytrope with n = 1.5
(Section 14.4.1).
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15.4 Protostellar evolution: Hayashi tracks

The relevant behaviour of convective protostars in this phase was investigated by the Japanese
astronomer Chushiro Hayashi. We investigate this behaviour through a polytropic model.

15.4.1 Interior properties

For a polytrope of index n, obeying the perfect gas equation,

P = Kρ(n+1)/n, (14.1)

=
ρ

µm(H)
kT (2.4)

if gas pressure dominates (a safe assumption). Eliminating ρ between eqtns. (14.1) and (2.4) we obtain

P = K−n
(

k
µm(H)

)(1+n)

T (1+n);

that is,

P = C1T (1+n) (15.5)

where

C1 = K−n
(

k
µm(H)

)(1+n)

is a constant for a given model.

From our mass-radius relation for polytropes,

R(3−n)M(n−1) ∝ Kn, (14.12)

we have, for n = 1.5,

K ∝ M1/3R

whence

C1 ∝
(
M1/3R

)−n
,

∝ M−1/2R−3/2

for n = 1.5. So, finally, from eqtn. (15.5),

P = C2M−1/2R−3/2T 5/2 (15.6)

for n = 1.5, where C2 is a constant (for given mean molecular weight).
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15.4.2 Boundary condition

To solve for C2, the constant of proportionality in eqtn. (15.6), we consider an outer boundary condition
– the photosphere. The photospheric radius is defined by optical depth τ = 2/3, measured radially
inwards (§8.3.2); that is, since

τ(R) ≡
2
3

=

∫ ∞

R
κ(r) ρ(r) dr,

or, assuming constant opacity in the atmosphere,

2
3

= κ

∫ ∞

R
ρ(r) dr.

From hydrostatic equilibrium,

P(R) =

∫ ∞

R
g(r) ρ(r) dr

'
GM
R2

∫ ∞

R
ρ(r) dr

=
GM
R2

2
3κ
.

We’ve assumed constant κ in the atmosphere of a given protostar, but the opacity will vary with time for
any one object, and between different objects, according to their individual photospheric pressures and
temperatures. We adopt the usual power-law dependence of opacity,

κ = κ0PpT q, (5.5)

so

P(R) =
GM
R2

2
3κ0PpT q .

This has P on both sides; rearranging,

P(R) =

(
GM
R2

2
3κ0

T−q
eff

)1/(1+p)

(15.7)

(where T ≡ Teff at the photosphere).

15.4.3 Solution

At the photosphere, both eqtn. (15.6) and (15.7) are true; i.e.,(
GM
R2

2
3κ0

T−q
eff

)1/(1+p)

= C2M−1/2R−3/2T 5/2
eff
.
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So, for any given mass, there is a single-valued relationship between R and Teff; but L = 4πR2σT 4
eff

, so
this is equivalent to a single-valued relationship between Teff and L – that is, a track in the HR diagram.
Such tracks are called Hayashi tracks. We can see that the physical quantities M, Teff , and R are all
represented to some power, so on taking logs it must be that

ln Teff = A ln L + B ln M + constant (15.8)

(where use has been made of L ∝ R2T 4
eff

); some lengthy but straightforward algebra shows that

A =
0.75p − 0.25

5.5p + q + 1.5
, B =

0.5p + 1.5
5.5p + q + 1.5

.

Opacity calculations indicate p ' 1, q ' 3 whence A ' 0.05, B ' 0.2. From eqtn. (15.8),

∂ ln L
∂ ln Teff

= 1/A;

since A is small, the track must be very steep (i.e., nearly constant temperature) in the HR diagram.2

We also see that

B =
∂ ln Teff

∂ ln M

is positive, so that the tracks move slightly to the left (i.e., higher temperature) with increasing mass; but
the dependence is weak, so all fully-convective stars lie on almost the same ‘Hayashi track’ (or Hayashi
line). For a given mass and chemical composition, no fully convective star can lie to the right of the
Hayashi track (because convection is the most efficient available means of energy transport). The region
to the right of the Hayashi track is the Hayashi ‘forbidden zone’ (Teff . 4 kK).

15.5 Protostellar evolution: Henyey tracks

As the contracting protostar descends the Hayashi track the internal temperature continues to rise until
ionization is complete, and the opacity drops in the core. Other than for the lowest-mass stars
(M . 0.5M�), which remain fully convective right onto the zero-age main sequence (ZAMS), this fall
in opacity allows energy to be transported radiatively in the interior. The star then moves away from the
Hayashi track, to higher Teff , following ‘Henyey’ track.

Consider the equation of radiative energy transport

L(r) ∝
r2

κRρ

dT
dr

T 3; (12.5)

2More-detailed calculations give small negative values for A; that is the temperature increases (slightly) with decreasing L.
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reviewing terms on the right-hand side, we have

ρ ∝
M
R3 ,

dT
dr
'

Tc

R
,

and we adopt

κR ∝ ρT−3.5

(Kramers’ opacity). Finally, the core temperature scales as

Tc ∝
M
R
. (11.8)

Inserting these results into eqtn. (12.5) yields

L ∝ M5.5R−0.5

and, since L ∝ R2T 4
eff

,

Teff ∝ R−5/8M11/8. (15.9)

That is, for given mass M, the luminosity and temperature increase as the star shrinks, with L ∝ R−0.5,
Teff ∝ R−5/8. Although the power-law dependences of L and Teff on R are numerically similar (whence
L ∝ T 4/5

eff
), in a typical HR diagram the temperature axis ranges over about one order of magnitude,

while the luminosity axis may vary over five or more orders of magnitude; the result is that Henyey
tracks appear as more or less horizontal features (Fig. 15.1).

15.6 Protostar to star

Until fusion ignites, the relevant timescale is the Kelvin–Helmholtz timescale (since the star is radiating
gravitational potential energy). This timescale is short, and the contracting protostar is still shrouded in
the dusty molecular cloud from which it formed. The increasing core temperature eventually results in
ignition of hydrogen burning; the protostar is now a star, on the zero-age main sequence (ZAMS).

Of course, the true circumstances are more complex in detail than the simple Hayashi picture; protostars
show circumstellar accretion disks, and outflows such as jets and stellar winds. Magnetic fields also
play a role. Material falling onto the protostar generates accretion luminosity, potentially through
shocks. This extra energy loss results in protostellar radii smaller than simple estimates (eqtn. 15.4).
Furthermore, the most massive stars may ignite hydrogen burning at the core while still accreting at the
surface.

Stars more massive than ∼ 5M� become stable against convection very quickly; most of their
pre-main-sequence evolution is on the Henyey branch, while stars with M . 0.5M� never become
stable against convection, and evolve vertically onto the MS as fully convective stars.
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Figure 15.1: The approach to the main sequence for (proto)stars of different masses. From Iben, ApJ, 141, 993 (1965).
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Box 15.1: Gravitational potential energy of a uniform-density sphere
Consider a spherical shell of thickness dr at radius r within a sphere of density ρ, radius R. The shell
mass is

dm = 4πr2ρ dr

and the mass within the shell is

M(r) =
4
3
πr3ρ

so the gravitational potential energy of the shell is

dΩ(r) = −G
M(r) dm

r

= −
16
3

Gπ2ρ2r4dr.

The total PE is therefore

Ω =

∫ R

0
dΩ(r)

= −
16
3

Gπ2ρ2
∫ R

0
r4dr

= −
16
15

Gπ2ρ2R5

but M = (4/3)πR3ρ, so

Ω = −
3
5

GM2

R
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Section 16

The main sequence: homologous models

We know that stars on the main sequence share many basic characteristics, as a consequence of their
common energy source. We also know that many properties vary along the main sequence, i.e., vary
with mass. Both aspects can be accommodated by supposing that stars along the main sequence are
essentially just scaled version of each other. This will give us insight into (e.g.) main-sequence
mass–luminosity relationships.

16.1 Transformed structure equations

The basic equations of stellar structure are normally cast in such a way as to describe the run of physical
properties with radius; but mass is the more fundamental physical property of a star (the radius of a
solar-mass star will change by orders of magnitude over its lifetime, while its mass remains more or less
constant), so for practical purposes it is customary to reformulate these structure equations in terms of
mass as the independent variable. We start by simply inverting eqtn. (2.5), the equation of mass
continuity, giving

dr
dm(r)

=
1

4πr2ρ(r)
; (16.1)

and the remaining basic structure equations are just multiplied by eqtn. (16.1), giving

dP(r)
dm(r)

=
−Gm(r)

4πr4 (hydrostatic equilibrium; eqtn. 2.2) (16.2)

dL(r)
dm(r)

= ε(r), ' ε0 ρ(r) T β(r) (energy continuity; eqtn. 2.7) (16.3)

dT (r)
dm(r)

= −
3κRL(r)

64π2r4acT 3(r)
(radiative energy transport; eqtn. 12.6) (16.4)

(where all the radial dependences have been shown explicitly; we could, equivalently, use the
dependence on mass m(r)).
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16.2 Homologous models

Homologous stellar models are defined such that their properties scale in the same way with fractional
mass x ≡ m(r)/M. That is, for some property X (which might be temperature, or density, etc.), a plot of
X(x) vs. x is the same for all homologous models. Such models may reasonably be used to investigate
zero-age main-sequence stars which have uniform chemical composition and which are in thermal,
hydrostatic, and radiative equilibrium.

Without any loss of generality, we can write the actual variables r, ρ, etc., as the product of some
function of relative mass, and some reference value of the variable; i.e.,

r(x) = fr(x) R# ρ(x) = fρ(x) ρ#

P(x) = fP(x) P# T (x) = fT (x) T#

L(x) = fL(x) L#

The ‘reference values’ will have the appropriate dimensions; e.g., R# must have units of length. So, for
example, R# might be the stellar radius – but not necessarily. It could be that, say, R# = 2R∗ (in which
case fr(1) would have the value 0.5, to ensure that r(1) = R∗, as required). Both the functions f and the
reference values X# are, as yet, unspecified in detail; our only supposition is that the functions are the
same from star to star (while the reference values are different).

Now consider hydrostatic equilibrium in the mass-dependent form expressed in the preceding
subsection:

dP(r)
dm(r)

=
−Gm(r)

4πr4 . (16.2)

Since x ≡ m(r)/M, we have dm = Mdx; and also dP(x) = P# d fP(x) (from the definition of P(x) just
given). Hence

dP(r)
dm(r)

→
P#

M
d fP(x)

dx
, =
−Gm(r)

4πr4 ,

=
−GMx

4π f 4
r (x) R4

#

,

=
GM
R4

#

×
−x

4π f 4
r (x)

.

Here the terms are collected such that first group of quantities has dimensions while the second does
not. It must therefore be the case that

d fP

dx
=
−x

4π f 4
r
, P# =

GM2

R4
#

. (16.5)

160



Figure 16.1: The variation of normalized luminosity (solid line) and normalised density (dashed line) as a function of
normalized mass. The curves shown are actually from a specific, detailed model of the Sun; the principle of homology is,
essentially, that these curves apply equally well to any other (main-sequence) star, regardless of its mass.

Repeating this reasoning for the other structure equations gives

d fr
dx

=
1

4π f 2
r fρ

, ρ# =
M
R3

#

, (16.6)

d fL

dx
= f αρ f βT L# = ε0 ρ# T β

# M (16.7)

d fT
dx

=
3 fL

64π2 f 4
r f 3

T

, L# =
ac
κR

(T# R#)4

M
, (16.8)

fρ =
fP

fT
T# =

µm(H)
k

P#

ρ#
(16.9)

where eqtns. (16.5)–(16.8) follow from eqtns. (16.2), (16.1), (16.3), and (16.4), respectively;
eqtn. (16.9) follows from the perfect gas equation, PG = (ρkT )/(µm(H)) (eqtn. 2.4). The left-hand set
are differential equations in the five functions f (which we will explore no further), and the right-hand
set gives us five equations for five unknowns, for given mass (and ‘known’ β, ε0, µ, κR). These
equations can therefore be solved simultaneously to show how things like luminosity and radius vary
with mass – for homologous stars in which the energy transport is radiative (eqtns. 16.4/16.8) and gas
pressure dominates (eqtns. 2.4/16.9).
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16.3 Results

16.3.1 Mass–luminosity relationship

Inserting eqtns. (16.5) and (16.6) into (16.9) gives us

T# =
µm(H)

k
GM
R#

; (16.10)

and using that in eqtn. (16.8) yields

L# = ac
(
Gm(H)

k

)4
µ4

κR
M3. (16.11)

Recalling that L(x) = fL(x)L#, what this means is that the flux through some shell containing a fraction
x of the total mass varies as (total) mass cubed; in particular, the surface luminosity is

L∗ ∝
µ4

κR
M3

where we can adopt a power-law form for the opacity, κR ' κ0ρ
pT q (eqtn. 5.5). For stars more massive

than ∼2M�, electron scattering dominates the opacity, and p = q = 0, whence
L ∝ M3

for given µ.1

For lower-mass stars Kramers’ law (p = 1, q = −3.5) is a better approximation. Substituting ρ ∝ M/R3

and T ∝ µM/R (so κR ∝∼ µ
−3.5M−2.5R+0.5), and anticipating that R ∝∼ M0.4 for low-mass stars (§16.3.2;

so κR ∝∼ µ
−3.5M−2.3), we find

L ∝∼ µ
7.5M5

These turn out to be really pretty good approximations to the (ZA)MS; only for M . 0.7M� do the
predictions start to break down, as the mass of the convective envelope becomes significant.

16.3.2 Mass–radius relationship

Eqtns. (16.7) and (16.11) give us

ρ# = ac
(
Gm(H)

k

)4
µ4

κR
M3 1

ε0T β
# M

=
ac
ε0

(
Gm(H)

k

)4
µ4

κR

M2

T β
#

, =
M
R3

#

(from eqtn. 16.6), so

M ∝
κR

µ4

T β
#

R3
#

.

1As stars burn hydrogen to helium, the global average value of µ increases, leading to an increase in L.
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Substituting our previous result for T# (eqtn. 16.10),

M ∝
κR

µ4

(µM)β

R(β+3)
#

, whence

R# ∝ κ
1/(β+3)
R µ(β−4)/(β+3)M(β−1)/(β+3)

Low-mass, solar-type, stars burn hydrogen through the proton-proton chain, for which ε ∝∼ ρT 4 (i.e.,
β ' 4), whence

R ∝∼ M0.43;
for stars more massive than ∼1.5M�, the CNO cycle operates, with β ' 18 (depending somewhat on the
core temperature), giving

R ∝∼ M0.8

16.3.3 Luminosity–temperature relationship

Neglecting µ, κR terms, then from §16.3.2

R ∝ M(β−1)/(β+3)

but also

L ∝ R2T 4
eff

whence

L ∝ M2(β−1)/(β+3)T 4
eff .

We also have

L ∝ M3

(§16.11, again neglecting µ and κR terms fort simplicity); eliminating M we obatin

T 4
eff ∝ L1− 2(β−1)

3(β+3) .

The outcome is that we can predict the slopes of the main sequence in the H–R diagram; for β = 4, 18
we obtain

log L = 5.6 log Teff + C4,

= 8.7 log Teff + C16

As before, these relations break down for low-mass stars, where the radiative-transport assumption
breaks down; but otherwise, these are quite reasonable representation of reality.
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Section 17

Stellar evolution

17.1 Mass limits for stars

We showed in Section 14.4 that the central conditions of a star (density, pressure, temperature) are
readily estimated for a polytropic model, for a given polytropic index n. These allow us to estimate the
minimum mass for which core hydrogen burning can take place (Tc ' 106 K); this turns out to be
∼0.1M�.

There’s also an upper limit to the possible mass of a star. Classically, this is determined by the
Eddington limit. The inward force of gravity is proportional to mass, while the outward
radiation-pressure force scales with luminosity, which increase with mass to the power ∼3; thus there
must be a point at which radiation overcomes gravity, and the star cannot be stable. This limit is
generally thought to be at ∼150M�. Only a few dozen stars are known that are more massive than
100M�, although the most massive star has a reported mass of ∼200M� (with a ZAMS mass of perhaps
300M�). Possibly this mass estimate is in error; but also, there are ways round the Eddington limit (e.g.,
inhomogeneous atmospheres that allow radiation to ‘leak out’ through lower-density routes).

17.2 Evolution on the main sequence

Within this allowed range of ∼ 10−1–102 M�, a star, by our definition, spends most of its lifetime on the
main sequence, burning hydrogen to helium in the core. However, even on the main sequence there are
different evolutionary behaviours, depending on mass. In this context, it’s convenient to divide the MS
into the ‘upper’ main sequence (M & 2M�,Teff & 104 K) and ‘lower’ main sequence:

Lower main sequence. Spectral types ∼F and later. Energy generation is through the
proton-proton chain, with radiative cores and convective envelopes (though stars less massive
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Figure 17.1: Evolutionary tracks for stars of different initial masses, starting at the ZAMS (based on
calculations by the Geneva group). The tracks of intermediate-mass stars, with initial masses of ∼2–
10M�, all show broadly similar characteristics.

than ∼0.25M�are fully convective). The extent of the envelope varies with mass; at 1M� the
envelope accounts for ∼3% by mass (∼30% by radius), increasing to ∼40% at 0.5M�.

Upper main sequence. Energy generation is through the CNO cycle; the high energy fluxes result
in convective cores, but lower envelope opacities result in radiative envelopes. The fractional core
mass decreases with total mass, because of the strong dependence of energy generation rate on
temperature (i.e., mass); ∼0.17M at 3M�, rising to ∼0.38M at 15M�.

[Not for lectures:]

Homology implies for two stars 1, 2

r1(x)
R1

=
r2(x)
R2

, (17.1)

m1(x)
M1

=
m2(x)

M2
(17.2)

whence we can obtain the density scaling from

dm2

dr2
=

dm1

dr2

M2

M1
(from eqtn. 17.2)

=
dm1

dr1

R1

R2

M2

M1
(from eqtn. 17.1). (17.3)
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We also have

dm2

dr2
= 4πr2

2ρ2 (from mass continuity, eqtn. 2.5)

= 4πr2
1

(
R2

R1

)2

ρ2 (from eqtn. 17.1), (17.4)

so, from eqtns 17.3 and 17.4,

dm1

dr1
= 4πr2

1

(
M1

M2

) (
R2

R1

)3

ρ2,

= 4πr2
1ρ1

or

ρ2

ρ1
= ρ1

(
M2

M1

) (
R1

R2

)3

(17.5)

(where ‘ρ1’ = ρ1(x)’, etc.). Mass continuity and hydrostatic equilibrium give

dP
dm

=
−Gm
4πr4 (16.2)

(17.6)

so

dP1

dm1
≡

dP2

dm2

dm2

dm1

dP1

dP2

=
−Gm2

4πr4
2

(
M2

M1

)
dP1

dP2

=
−Gm1

4πr4
1

; that is,

dP2

dP1
=

(
M2

M1

) (
m2

m1

) (
r1

r2

)4

=

(
M2

M1

)2 (
R1

R2

)4

.

Integrating (and taking the surface pressure to be zero),

P2

P1
=

(
M2

M1

)2 (
R1

R2

)4

. (17.7)

Finally, for an equation of state

P1 = (ρ1kT1)/(µ1m(H)) (2.4)

we find, from eqtns. (17.5) and (17.7),

T2

T1
=
µ2

µ1

M2

M1

R1

R2
(17.8)

(provided that µ1/µ2 is independent of radius).
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Evolution on the main sequence is driven by the slow (nuclear-timescale) conversion of hydrogen to
helium in the core, with a consequent increase in mean molecular weight. To maintain the pressure (i.e.,
to maintain hydrostatic equilibrium) the core contracts, causing the core temperature to rise (eqtn. 17.8).
Because of the temperature dependence of energy generation, this results in an increase in luminosity,
and the star moves upwards in the HRD. (Now half-way through its main-sequence lifetime, the Sun is
currently about 30% more luminous than it was on the zero-age main sequence.) The shrinking core is
also accompanied by expansion of the envelope, and a drop in Teff .

Precise details of main-sequence evolution depend on the effectiveness of mixing in the core
(corresponding to our division between ‘low-mass’ and ‘high-mass’ stars). This can be seen in the
different evolutionary tracks shown in Fig. 17.1; for stars on the lower main sequence (M . 2M�), there
is little or no mixing in the radiative core, and the mean molecular weight in the centre builds up
relatively quickly. Energy production becomes concentrated in a ‘thick shell’ around the centre.
Consequently, there is a gradual transition to subsequent evolutionary phases where fusion occurs in a
shell around a core consisting of helium (and heavier elements).

More massive stars have fully mixed (convective) cores, so exhaust hydrogen at roughly the same time
throughout the core. In the final stages of core hydrogen fusion the entire star contracts to try to
maintain energy generation, increasing Teff and producing a short-lived ‘blue hook’ in the HRD. Again,
as core hydrogen is exhausted, the star establishes a hydrogen-burning shell around the core.

The main-sequence lifetime is

τ ∝ M/L,

or τ ∝ M(1−x5) for our homologous models (i.e., τ ∝ M−2 for upper main sequence stars); hence more
massive stars have shorter lifetimes than less mass ones. The main-sequence lifetime of the Sun is
∼ 1010 yr, while that of a massive star is much less (∼ 107 yr for ∼ 20M�).

The evolution of the most massive (O- and B-type) stars are also affected by mass loss through stellar
winds. A 25M� star with a main-sequence lifetime of 6 × 106 yr losing mass at a rate of
∼ 10−6 M� yr−1 will lose a quarter of its ZAMS mass in this way. The paradoxical consequence of
losing mass is that the star’s main-sequence lifetime is extended.

17.3 Mass dependence of subsequent evolution

The discussion of subsequent evolution can be structured in several ways – for example, according to
the minimum mass required for a star to form its first degenerate core. We can therefore elaborate our
simple ‘high-mass/loss-mass’ division to discuss this subsequent evolution.
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First degenerate cores as a function of mass
Mass range Category First degenerate

(M�) core
≤2 Low He
2–8 Intermediate C/O
8–11 High O/Ne/Mg
≥11 High –

• Low-mass stars develop a degenerate helium core while ascending the red-giant branch
(discussed below; Section 17.4). Core contraction is slow, leading to a slow ascent of the RGB.
Core helium ignition takes place explosively in a thermonuclear runway; in this ‘helium flash’
enormous energy (∼ 1011L�!) is generated for a few seconds, lifting the degeneracy; the core
expands and helium burning becomes stable.

Helium burns to a C/O core, which never gets hot enough to ignite. The star ends its life as a C/O
white dwarf.

• Intermediate-mass stars are discussed in detail below. They have core temperatures high enough
to ignite helium without going through a degenerate phase. The star again ends as a white dwarf
of degenerate C/O.

• High-mass stars are hot enough to ignite core carbon burning before developing O/Ne/Mg
degenerate cores. For initial masses in excess of ∼11M� subsequent stages of nuclear fusion can
occur, all the way to Fe; these stars end their lives as core-collapse supernovae.

17.4 Evolution off the main sequence: intermediate-mass stars

As an example of post-main-sequence evolution, we’ll discuss in detail intermediate-mass stars, which
illustrate a number of features of interest (specifically, a 4M� star; Fig. 17.2).

17.4.1 Red-giant branch: shell hydrogen burning

When core hydrogen is exhausted (the ‘terminal age main sequence’, or TAMS; point B in Fig. 17.2) the
star has, essentially, an inert helium core surrounded by a hydrogen-burning shell. The core mass
increases (gaining mass from the shell), and contracts under gravity. As the core contracts, the response
of the envelope is to expand: the ‘mirror principle’ (or ‘shell-burning law’).

All numerical stellar-evolution models predict this transition, and yet we lack a simple, didactic
physical explanation:
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Figure 17.2: Evolutionary track for a 4-M� star (calculated using EZ-Web, schematically extended to
include the thermal-pulsing AGB at H).

“Why do some stars evolve into red giants though some do not? This is a classic question
that we consider to have been answered only unsatisfactorily.” – D. Sugimoto &M.
Fujimoto (ApJ, 538, 837, 2000)

Evolutionary timescales for a 4-M� star
(based on Geneva models)

Phase Fig. 17.2 t (yr) ∆t Energy source

Main sequence A–hook 1.62+8 – Core H burning
hook–B 1.65+8 5.30+6

Hertzsprung gap B–C 1.66+8 0.97+6 Shell H burning
RGB C–D 1.66+8 0.66+6
CHeB D–E 1.74+8 8.11+6 Core He + shell H
CHeB E–F 1.92+8 1.77+7
AGB F–G 1.94+8 1.78+6 Shell He + pulsing

Mirror principle

Whenever a star has an active shell-burning source, the shell acts as a ‘mirror’ between the core and
envelope; core contraction leads to envelope expansion, and vice versa.

To maintain thermal equilibrium, the burning shell must remain at approximately
constant temperature due to the thermostatic action of nuclear burning. Contraction of
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the burning shell would entail heating, so the burning shell must also remain at roughly
constant radius. As the core contracts, the shell density, and therefore pressure, must
decrease; hence the pressure of the overlying envelope must decrease – so the layers
above the shell must expand.

We simplify the stellar structure into an inner core and an outer envelope, with masses and radii
Mc,Me and Rc,Re(= R∗) respectively. At the end of core hydrogen burning, we suppose that core
contraction happens quickly – faster than the Kelvin–Helmholtz timescale, so that the virial theorem
holds; and thermal and gravitational potential energy are conserved to a satisfactory degree of
approximation. We formalize this supposition by writing

Ω + 2U = constant (Virial theorem)

Ω + U = constant (Energy conservation)

These two equalities can only hold simultaneously if both Ω and U are individually constant,
summed over the whole star. In particular, the total gravitational potential energy is constant

Stars are centrally condensed, so we make the approximation that Mc � Me; then, adding the core
and envelope,

|Ω| '
GM2

c

Rc
+

GMcMe

R∗

We are interested in evolution, so we take the derivative with respect to time,

d|Ω|
dt

= 0 = −
GM2

c

R2
c

dRc

dt
−

GMcMe

R2
∗

dR∗
dt

i.e.,

dR∗
dRc

= −
Mc

Me

(
R∗
Rc

)2

.

The negative sign demonstrates that as the core contracts, the envelope must expand – a good rule of
thumb throughout stellar evolution, and, in particular, what happens at the end of the main sequence
for solar-type stars.

As the radius increases, the effective temperature falls, and the star moves rightwards across the HRD.
The temperature and density gradients between core and envelope are initially shallow, and the shell is
quite extensive (in mass); this phase is referred to as ‘thick-shell burning’. As the core contracts and the
envelope expands, these gradients increase, and the shell occupies less mass. During this ‘thin-shell
burning’, a significant part of the energy goes into expanding the envelope, leading to a drop in
luminosity.

The increasing opacity that accompanies cooling temperatures favours convection, and the star
approaches the Hayashi track (Fig. 17.2, point C). As the core continues to shrink, and the envelope
expands in response, further decreases in Teff are not possible (the star can’t transport energy efficiently
enough), so the luminosity increases and the star ascends the ‘red-giant branch’ (RGB).
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The transition from main sequence to red giant is rapid, so few stars are observed in this region of the
HRD (points B�C) – the so-called ‘Hertzsprung gap’. The expansion C�D occurs on a thermal timescale,
so the hydrogen shell-burning phase is short-lived for intermediate-mass stars (it is much longer for
lower-mass stars).

First dredge-up

As an intermediate-mass star ascends the RGB, it develops an extensive convective envelope which
reaches down to the hydrogen-burning shell (echoing the fully convective phase of the Hayashi track),
bring CNO-processed material to the surface - the first dredge-up. Because the C–N cycle reaches
equilibrium before the O–N cycle, C–N processed material is exposed at the surface; surface N is
typically enriched by a factor ∼2, C is depleted by ∼30% (and O is unchanged). The observation of this
CN-processed material is important evidence that it is the CNO cycle (not proton-proton burning) that
occurs in the H-burning shell.

Stellar winds

Red giants are observed to lose mass in the form of slow winds (v ' 5–30 km s−1, Ṁ ∼ 10−8 M� yr−1).
Depending on luminosity, the star can lose several tenths of a solar mass through this wind.

The end of the RGB phase: core helium ignition.

The helium ‘ashes’ of shell hydrogen burning increase the mass of the core, which contracts under
increasing pressure. According to the virial theorem, half the energy released by the gravitational
contraction of the core is radiated away, and half goes into heating the core. Eventually the core
temperature is high enough to ignite core helium burning in the triple-α process (T ∼ 108 K; point D).

For stars in the mass range1 M ∼ 0.8–2.3M� the inert helium core is degenerate. Once it reaches a mass
of ∼0.45M�, the temperature is high enough for helium ignition in a ‘helium flash’. This is a
thermonuclear runaway (because the degenerate equation of state is independent of temperature, the
temperature – hence energy generation rate – initially rises without any increase in pressure), raising the
core luminosity to as much as 1010–1011L�, but only briefly (a few minutes), before the degeneracy is
lifted. The helium flash doesn’t have a disruptive effect on the star, and isn’t directly observable; the
energy initially goes into lifting the degeneracy and expanding the core (and some is lost through
neutrino emission). Remaining energy is absorbed by the envelope, and is released slowly (on a thermal
timescale).

1In lower-mass stars, the pressures are not high enough to produce degeneracy; for higher-mass stars, the gas pressure
remains high enough to prevent degeneracy.
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Because the helium flash takes place at approximately constant core mass, the maximum luminosity at
the stellar surface generated by this process (which exceeds that of other RGB phases) is reasonably
insensitive to the initial mass or chemical composition of the star. Consequently, the brightest
bolometric magnitude reached by the star as a result of the helium flash is nearly constant. The
brightness of the ‘tip of the red-giant branch’ (TRGB) in the HR diagram of a sufficiently large sample
of stars can therefore be used as a ‘standard(ish) candle’, and hence a useful distance indicator.

17.4.2 Horizontal branch: core helium (+shell hydrogen) burning

The star now has two energy sources: the helium-burning core, and the hydrogen-burning shell.

The core expands as a result of the energy input (heating) and the density in the adjacent hydrogen shell
drops. The shell contributes most (∼70%) of the energy, so the drop in density leads to a fall in total
energy generation (luminosity), while the shrinkage of the envelope (mirror law) leads to to a rise in
effective temperature – the star moves down and to the left in the HRD (to point E).

For our 4M� example, homology indicates L∗ ∝ M3µ4/κR (§16.3.1); that is, a core-helium-burning star
is expected to be &50× more luminous than a core-hydrogen-burning star of the same mass
(∆MBol & 4m), just because of the difference in mean molecular weight. Of course, the internal
structures of a main-sequence star and the evolved counterpart are quite different, so they are not really
at all homologous; but nonetheless, the analysis gives a qualitatively, and even semi-quantitatively,
correct answer.

The star is now in a relatively stable stage of core-helium (+shell-hydrogen) burning (E�F). In the
HRDs of globular clusters (coeval low-metallicity systems), these stars form a ‘horizon branch’, as a
result of bluewards loops at constant luminosity (not obvious for the 4-M� track shown in Fig. 17.2, but
clear for the 6–10-M� tracks in Fig. 17.1); this relatively long-lived phase (∼10% of the main-sequence
lifetime) is therefore called the horizontal branch.2

The ‘Red Clump’

The stars at the red end of the horizontal branch (typically of higher metallicity than globular-cluster
stars) form a ‘red clump’ (RC). This is a visually striking feature of the colour—magnitude diagrams of
intermediate-age star clusters and nearby galaxies, and is defined by a group of core-helium-burning
stars which all have similar absolute magnitudes, making the RC another potential standard candle.

The sizable convective envelopes result from either a moderately high metallicity or, more generally, a
significant buffer of mass (a few 0.1 M) above the H-burning shell. Low-mass stars without such a

2The horizontal branch of the globular cluster 47 Tuc (Fig. 11.1) is evident at V ' 13.8, (B − V) ' 0.7.
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buffer, or with extremely low metallicities, will burn He at higher effective temperatures, defining the
horizontal branch. Red-clump stars are associated with younger, more metal-rich populations than those
associated with the Horizontal Branch, although the RC is sometimes referred to as the red extremity of
the HB.

Metallicity is the key factor explaining that difference (low metallicity stars have lower opacities and are
hotter), but other factors (composition, age, rotation, envelope mass) appear to affect the morphology of
the HB.

17.4.3 Early asymptotic giant branch (E-AGB): shell helium burning [G]

Eventually core helium is exhausted (point F), leaving an inert core composed principally of carbon and
oxygen. Helium continues to burn outside the core, in a thick shell. Core contraction is accompanied by
expansion of the envelope, and the drop in density and temperature quenches the shell hydrogen
burning; the sole energy source is now the helium-burning shell. Cooling of the envelope is
accompanied by an increase in opacity, and the envelope becomes strongly convective; the star moves
back onto the Hayashi track, and ascends the asymptotic giant branch (AGB; G). For intermediate-mass
stars, the contracting CO core becomes degenerate (Table H). The AGB phase lasts about 10% of the
horizontal-branch lifetime.

Paczynski relation.

The star’s luminosity at this stage is largely determined not by the total mass, but by the mass of the
degenerate core (although the latter is a function of the former, of course). We know that there exists a
mass–radius relationship for degenerate bodies (Section 14.4.4); thus the pressure, and hence the
energy-generation rate, in a shell outside the core is principally dependent on the core mass. Paczynski
(1970) quantified this idea; a modern version (from Langer) is

L∗ ' 5.9 × 104 (Mc/M� − 0.52) L�

(where Mc is the core mass).

Stars with higher initial masses will have higher-mass, smaller cores, and hence higher AGB
luminosities. Since, ultimately, the luminosity of the helium-burning shell drives the envelope
expansion, stars with higher core masses also evolve to larger radii (∼300R� for the model shown in
Fig. 17.2).

Second dredge-up.

The convective envelope reaches down to the now-dormant hydrogen-burning shell, cycling the
CNO-processed material to the surface. In this second dredge-up, surface abundances of He and N are
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enhanced, and C and O depleted. (The second dredge-up only occurs for stars with initial masses
&3–4M�; at lower masses, the convective zone doesn’t extend down to the hydrogen discontinuity.)

Stellar winds.

The stellar-wind mass-loss rate increases dramatically during the AGB phase, reaching
∼ 10−8–∼ 10−6 M� yr−1; this wind is believed to be powered by radiation pressure on dust forming in
the cool outer regions of the atmosphere.

17.4.4 Thermal pulsing AGB (TP-AGB); mostly shell H burning [H]

As the helium-burning shell uses up the available helium fuel, its mass decreases; the overlying
hydrogen layers contract, heating a shell of hydrogen to the point where it can ignite. Two shell sources
now exist, but because their rates of energy generation are so different, the situation is unstable, leading
to a phase of thermal pulsing. During most of this phase, the energy comes from hydrogen shell
burning, with relatively brief helium shell ‘flashes’.

Schematically, the cycle proceeds as follows:

1. We start with a degenerate CO core and a helium-burning shell.

2. As the star ascends the AGB, the ‘ash’ from the helium-burning shell adds mass to the CO core,
driving the luminosity up (Paczynski relation). The helium-shell mass is reduced (by He burning,
and the continuing second dredge-up); when it reaches ∼0.02M�, the temperature at the H/He
interface is sufficient to ignite shell hydrogen burning.

The structure of the star is now:

a degenerate CO core;

a helium-burning shell;

a hydrogen-burning shell; and

an outer (hydrogen-rich) envelope.

3. Burning in the helium shell is unstable because of the thinness of the shell, coupled with the
strong temperature dependence of the 3α reaction. Essentially, the energy liberated raises the
pressure, initiating expansion; once the expansion has progressed far enough, cooling sets in and
the helium burning stops (Iben & Renzini 1983).

4. The hydrogen shell continues to burn, increasing the mass of the underlying helium layer between
the CO core and the H-burning shell. H-shell burning is providing practically all the luminosity;
this phase lasts ∼ 103–105 yr, depending on core mass (smaller cores lead to longer cycles).
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5. The helium layer between the core and hydrogen-burning shell is mildly degenerate. As mass is
added from the hydrogen-burning shell, the pressure and temperature rise in this zone.

6. Eventually, helium is reignited explosively in a ‘helium flash’ when the temperature reaches
∼ 108 K. The fusion raises the temperature, which increases the reaction rate, which raises the
temperature. . . The helium-burning layer doesn’t expand at first because of the degeneracy
(pressure support isn’t thermal), so there is no regulation of the rate of fusion (hence a ‘flash’),
but then the temperature reaches the point where the degeneracy is fully lifted.

7. Considerable energy is generated in the flash (∼ 108L� for ∼a year), but much of it goes into
expanding the helium zone. The helium-burning region stabilises and stable burning ensues for
∼ 102 yr. As a result of expansion and cooling, shell hydrogen burning is extinguished, which
restores the conditions at the end of the E-AGB phase (step 1); and the cycle repeats.

The thermal pulse cycle can repeat many times, but is barely noticeable at the surface of the star. The
helium shell is dormant for more than 99% of the cycle; hydrogen shell burning is the main luminosity
source averaged over the time.

Third dredge-up.

The large energy flux above the helium shell at step 7 above demands convective energy transport. If
this merges with the convective outer envelope, the products of shell helium burning (notably carbon)
can be exposed at the surface, in a third dredge-up.3 This can lead to the formation of ‘carbon stars’
(surface C/O> 1; cp. solar, C/O' 0.4).

However, for sufficiently massive stars (M & 4–5M�), the base of the convective envelope can reach
T & 5 × 107 K, hot enough to convert dredged-up carbon to nitrogen through the CN cycle (‘hot bottom
burning’).

Furthermore, 14N is a product of CNO burning in the hydrogen shell. During a thermal pulse, this can
be burnt to neon through

14N(α, γ)18F(β+, ν)18O(α, γ)22Ne

and then, for stars with cores masses &1M�(i.e., high enough temperatures),

22Ne(α, n)25Mg,

generating a flux of neutrons at every thermal pulse. This provides ‘fuel’ for the s process; and the
repeated application of neutron fluxes generates heavier and heavier elements. The third dredge-up can

3The dredge-up of helium-burning products is always called a third dredge-up, even if a second dredge-up did not occur;
and multiple third dredge-ups can occur in a star.
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(and does) reveal such elements, including, famously, 99Tc, a radioactive isotope4 with a half-life of
only ∼ 2 × 105 yr.

Mass loss.

TP-AGB stars show dusty, massive, slow stellar winds, with Ṁ reaching up to ∼ 10−4 M� yr−1. Since
this can continue for ∼ 105 yr, the star can lose a substantial fraction of its original mass through such
winds.

The dust composition depends on the C/O ratio (i.e., on the nature of the third dredge-up). If C/O< 1
(by number), then all the carbon is locked into the stable CO molecule, and the remaining oxygen forms
silicate dust; if C/O> 1, then all the oxygen is locked into CO, and the dust is carbon-rich (containing,
e.g., SiC and CnHn molecules). The mechanism responsible for the substantial mass loss is not well
understood; radiation pressure must play a role, but pulsational instabilities may be involved (many
AGB stars are long-period variables).

17.4.5 Post-AGB evolution

The mass of the convective envelope decreases steadily through the AGB phase, through shell burning
(removes mass from the bottom of the envelope) and stellar winds (removes mass from the top of the
envelope). When the mass of the hydrogen envelope becomes very small (∼ 10−3–10−2M�), convection
can no longer be sustained and the envelope contracts into radiative equilibrium.

Hydrogen shell burning is still taking place, so the luminosity is unchanged (following the Paczynski
relation); the star therefore leaves the AGB, moving leftwards in the HRD. As it gets hotter it ionizes
the circumstellar envelope generated principally through AGB mass loss, and develops a fast,
radiation-driven wind (Ṁ ' 10−7 M� yr−1, v ' 2000 km s−1). These two effects produce the diversity
of planetary nebulae observed.

When the envelope mass falls to ∼ 10−5M�, the H-burning shell dies out, and the remnant core becomes
a cooling white dwarf at ∼3–10×104 K, slowly radiating away its thermal energy over ∼a Hubble time.5

17.4.6 Summary

To review the key evolutionary stages of an intermediate-mass star:

Main-sequence stars: powered by core hydrogen burning; longest evolutionary phase.

4Technetium was discovered in red-giant spectra by Paul Merrill in 1952.
5In some cases a late thermal pulse can bring the star back as a ‘born-again’ AGB star.

177



RGB stars: powered by shell hydrogen burning. First dredge-up.

Horizontal-branch stars: powered by shell hydrogen burning and core helium burning.
Second-longest evolutionary phase (∼10% of MS lifetime).

Early-AGB stars: powered by shell helium burning. Second dredge-up (of CNO processed
material from dormant H-burning shell).

TP-AGB stars: thermally pulsing. Hydrogen shell burning is the main energy source, with
repeating brief helium shell flashes (thermal pulses). Third dredge-up (of He-burning products
and s-process elements).

Planetary nebula; white dwarf.
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Appendix A

SI units

A.1 Base units

Astronomers have been rather bad at using the SI system; for understandable reasons, they prefer their
own ‘custom’ units (M�, pc, etc.), and often adopt cgs units (centimetre, gram, second) in preference to
the mks units (metre, kilogram, second) that are adopted in the SI system. Nevertheless, students, in
particular, really should strive to use SI, which (among other advantages) greatly simplifies treatments
of electricity.1

The seven irreducible base units of the SI system [and their cgs counterparts, where different] are:

Quantity SI Unit cgs equivalent

length metre m [centimetre cm = 10−2 m]
mass kilogram kg [gram g = 10−3 kg]
time second s
electric current ampere A [Biot bi = 10−1 A]
amount of substance mole mol
luminous intensity candela cd
thermodynamic temp. kelvin K [degree Celsius ◦C = K − 273.15]

1In SI, electric current is defined in terms of the directly measurable magnetic force it exerts, and charge is then defined as
current multiplied with time.
In cgs ‘electrostatic units’, the unit of charge (or statcoulomb), is defined by the quantity of charge which gives a force constant
of 1 in Coulomb’s law. That is, for two point charges, each with charge 1 statcoulomb, separated by 1 centimetre, the electro-
static force between them is one dyne. This also has the effect of making electric charge dimensionless (and not requiring a
fundamental unit).
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A.2 Derived units

‘Derived quantities’ can be defined in terms of the seven base quantities. There are 20 derived quantities
which are not dimensionless and which, for convenience, have named units; these are tabulated overleaf.

The units of angle and solid angle are, formally, simply the number 1 (being ratios of dimensionally
identical quantities). Nonetheless, these two further derived quantities have named units, as the lack of
units could easily be confusing. They are:

• radian (rad): the unit of angle is the angle subtended at the centre of a circle by an arc of the
circumference equal in length to the radius of the circle (so there are 2π radians in a circle).

• steradian (sr): the unit of solid angle is the solid angle subtended at the centre of a sphere of
radius r by a portion of the surface of the sphere having an area r2 (so there are 4π steradians on a
sphere).

Many other derived quantities in more or less common use don’t have special names for their units;
some are given in the tables which follow (in a few cases, these quantities do have named units in the
cgs system). A number of other convenient units are not directly derived from the SI base units, but can
nonetheless be expressed in terms of those units, and are recognized by the guardians of the SI system.
Important examples for astrophysics include:

• The minute (m=60 s), hour (h = 3600 s), and day (d = 86 400 s).
(The year is not an admitted unit, as it varies in length; for rough calculations it may be adequate
to assume 1 yr ' 365.25 d.)

• the degree (◦ = 2π/360 rad), arcminute (′ = 2π/21 600 rad), and arcsecond (′′ = 2π/1.296×106 rad)

• the atomic mass unit (amu = 1.66053886 × 10−27 kg)

• the electron volt (eV = 1.60217646 × 10−19 J)

• the ångström (Å = 10−10 m = 0.1 nm)

• the astronomical unit (au = 1.49598 × 1011 m) and
the parsec (pc = 3.08568025 × 1016 m).
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Unnamed Derived SI units
Quantity Units Dimensions

area m2 m2

volume m3 m3

speed, velocity m s−1 m s−1

acceleration m s−2 m s−2

jerk m s−3 m s−3

angular velocity rad s−1 s−1

momentum, impulse N s kg m s−1

angular momentum N m s kg m2 s−1

torque, moment of force N m kg m2 s−2

wavenumber m−1 m−1

mass density kg m−3 kg m−3

heat capacity, entropy J K−1 kg m2 s−2 K−1

specific heat capacity, specific entropy J K−1 kg−1 m2 s−2K−1

specific energy J kg−1 m2 s−2

energy density J m−3 kg m−1 s−2

surface tension N m−1 = J m−2 kg s−2

heat flux density, irradiance W m−2 kg s−3

thermal conductivity W m−1 K−1 kg m s−3 K−1

diffusion coefficient m2 s−1 m2 s−1

dynamic viscosity1 Pa s = N s m−2 kg m−1 s−1

kinematic viscosity2 m2 s−1 m2 s−1

electric charge density C m−3 m−3 A s
electric current density A m−2 A m−2

conductivity S m−1 kg−1 m−3 s3 A2

permittivity F m−1 kg−1 m−3 s4 A2

permeability H m−1 kg m s−2 A−2

electric field strength V m−1 kg m s−3 A−1

magnetic field strength3 A m−1 A m−1

luminance4 cd m−2 cd m−2

cgs named units:
1poise P = 0.1 Pa s
2stokes St = 10−4 m2 s−1

3oersted Oe = 1000
4π A m−1

4stilb sb = 104 cd m−2
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A.3 Prefixes

The SI system also specifies that names of multiples and submultiples of units are formed by means of
the following prefixes:

Multiplying Prefix Symbol Multiplying Prefix Symbol
Factor Factor
1024 yotta Y 10−1 deci d
1021 zetta Z 10−2 centi c
1018 exa E 10−3 milli m
1015 peta P 10−6 micro µ

1012 tera T 10−9 nano n
109 giga G 10−12 pico p
106 mega M 10−15 femto f
103 kilo k 10−18 atto a
102 hecto h 10−21 zepto z
101 deca da 10−24 yocto y

Multiple prefixes may not be used, even for the kilogram (unique among SI base units in having one of
these prefixes as part of its name), for which the prefix names are used with the unit name ‘gram’, and
the prefix symbols are used with the unit symbol ‘g’; e.g, 10−6 kg = 1 mg (not 1 µkg).

With this exception, any SI prefix may be used with any SI unit (whether base or derived, including the
degree Celsius and its symbol ◦C). Note that use of ‘micron’ for the µm persists very widely (almost
universally!) in astrophysics, although the approved SI name is the micrometre (not to be confused with
a micrometer, which is a measuring instrument; one good reason to use English spelling in preference to
‘American English’. . .).

According to SI rules, these prefixes strictly represent powers of 10, and should not be used to represent
the powers of 2 commonly found in computing applications. Thus one kilobyte (1 kbyte) is 1000 bytes
– and not 210 bytes = 1024 bytes. In an attempt to resolve this ambiguity, prefixes for binary multiples
have been recommended by the International Electrotechnical Commission for use in information
technology (though they’re achieving acceptance only very slowly):

Factor Name Symbol Origin
210 kibi Ki ‘kilobinary’, (210)1 kilo, (103)1

220 mebi Mi ‘megabinary’, (210)2 mega, (103)2

230 gibi Gi ‘gigabinary’, (210)3 giga, (103)3

240 tebi Ti ‘terabinary’, (210)4 tera, (103)4

250 pebi Pi ‘petabinary’, (210)5 peta, (103)5

260 exbi Ei ‘exabinary’, (210)6 exa, (103)6
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A.4 Writing conventions

For those really interested in the details, here are some of the more important elements of recommended
writing style for SI units:

• Symbols are written in upright, roman type (‘m’ for metres, ‘l’ for litres).

• Units are written without a capital (other than where the rules of punctuation require it), as are
their corresponding symbols, except for symbols derived from the name of a person; thus “the
symbol for the coulomb is ‘C’ ”. However, some American-speaking countries use ‘L’ for ‘litre’
(to avoid potential confusion with numeric ‘1’).

• Names of units take plurals according to the usual rules of grammar; e.g., 20 kilograms,
40 henries. ‘Hertz’, ‘lux’, and ‘siemens’ have the same form in the singular and the plural.
Symbols of units are not pluralised (‘20 kg’, not ‘20 kgs’), thereby avoiding potential confusion
with the second (‘s’).

• A space should separates a number and its unit (‘20 kg’, not ‘20kg’). Exceptions are the symbols
for degrees, arcminutes, and arcseconds (◦, ′, ′′), which should be contiguous with the number
(e.g., 20◦ 15′).

• Symbols do not have an appended full stop (other than where the rules of punctuation require it;
specifically, at the end of a sentence).

• Commas should not be used to break up long runs of digits, though spaces may be used
(3.141 592 654, not 3.141,592,654).

A.5 SI vs. cgs: some notes on units of electromagnetism

Thanks to the French physicist Charles-Augustin de Coulomb, we know that the electrostatic force
between two charged objects is proportional to the product of the charges, q1q2, and inversely
proportional to the square of the distance d between them; i.e.,

F = kE
q1q2

d2 (A.1)

where kE is some constant of proportionality, the dimensions and numerical value of which depends on
how we define ‘charge’ (and ‘distance’).

A wire carrying a current is a simple example of a moving charge that generates a magnetic field. For
two long, parallel wires separated by distance d, the force per unit length is proportional to the product
of the currents they carry, I1I2, and inversely proportional to the perpendicular separation of the wires:

F
L

= kM
I1I2

d
(A.2)
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where kM is again a constant of proportionality with a value that depends on what we mean by ‘current’.

Of course, these are just two different sides of the same coin: electromagnetism. A current is just a flow
of charge, and EM theory tells us that

kE

kM
=

c2

2

so if we know (or define) one of kE and kM, then we know the other.

The critical point is that the cgs and SI systems make different choices for the constants.

A.5.1 The cgs system.

In the cgs system, Coulomb’s law, eqtn. (A.1), is just

F =
q1q2

d2 ;

that is kE is implicitly defined as unity (and is dimensionless); thus

F
L

=
2
c2

I1I2

d
.

The (derived) unit of charge is the electrostatic unit (esu), defined as

esu ≡
√

dyne × cm2 = g1/2cm3/2s−1

A.5.2 The SI system.

The SI system, on the other hand, is constructed from eqtn. (A.2), which lends itself to use of the
ampere, where one ampere is defined to be the constant current that will produce an attractive force of
2 × 10−7 newtons per metre of length between two straight, parallel conductors of infinite length and
negligible circular cross section placed one metre apart in a vacuum.

Then

kM =
µ0

2π

where

µ0 ≡ 4π × 10−7N A−2

is the permeability of free space, requiring a definition as a consequence of choosing a base unit for
current. We can now write Coulomb’s law in the SI system, since

kE =
c2

2
kM =

µ0c2

4π
= 8.99 × 109N m2 (A s)−2;
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that is, charge, in the SI system, has units of ampere seconds (i.e., coulombs).

We also define the permittivity of free space,

ε0 ≡
1

µ0c2 .

Thus in SI units we write Coulomb’s Law as

F =
1

4πε0

q1q2

d2 .

A.6 May 2019

Originally the SI system was based largely on arbitrary references – for example, the metre was
originally defined (in 1793) as one ten-millionth of the distance from the equator to the North Pole, but
was redefined in terms of a prototype metre bar. Similarly, until very recently ‘the’ kilogram was,
essentially, defined by a cylinder of platinum-iridium alloy kept in a laboratory in France.

One problem (of several) with this reference system is that it’s not constant. By definition, the mass of
the reference kilogram was always one kilogram – even if a lump gets knocked out of it. And the bar
that defined the length of the metre was changed in 1889 (with a concomitant change in the unit of
length).

This in turn meant that any measurement of a physical constant, like the speed of light in vaccuum, was
liable to yield a value that may be subject to change, if our reference for length, or speed, changed.

In recognition of this, there has been a slow migration from the philosophical viewpoint of measuring
physical constants (which we believe are effectively truly constant) in terms of arbitrarily defined units
to instead defining the units in terms of physical constants. We can recognise an illustration of this trend
in the 1983 redefinition of the metre in terms of the distance travelled by light in vacuum in
1/299792458 of a second.

But what’s “a second”? We’re familiar with it as 1/3600th part of an hour, which is 1/24th of a day; but
the length of the day is not constant. . .. So in the metric system, the second was originally defined as 1
part in 86400 of the ‘mean solar day’; but then we have to define a mean solar day. The second is now
defined in terms of a basic physical process: it is defined as “the duration of 9,192,631,770 periods of
the radiation corresponding to the transition between the two hyperfine levels of the ground state of the
caesium-133 atom.”

A third SI base unit, the candela, is similarly defined in terms of basic physical constants: it is the
luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency
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540 × 1012 Hz2 with a radiant intensity in that direction of 1/683 watt per steradian.

May 2019 marks the completion of this migration, with a fundamental revision to the construction of
the SI system – moving away completely from material artefacts (such as the prototype kilogram in
Paris), and instead defining all the base units in terms of a set of constants of nature.

Rather than defining the Plank constant in terms of the kilogram, the kilogram will be defined in terms
of the Planck constant. Of course, to do this we need to adopt some specific value for the Planck
constant (expressed in SI units). But we can do this, just as the metre is defined in terms of the speed of
light; we just need to agree on a numerical value. And by choosing a value that agrees with the best
measurements from the ‘old philosophy’, we ensure continuity in our metrology.

Similarly, the ampere will no longer be used to measure the charge on the electron; rather, the charge on
the electron will define the ampere.

And the Kelvin will be defined by Boltzmann’s constant (and not by the triple point of water).

The final fundamental unit of the SI base system is Avagadro’s number (the number of elementary
particles in one mole of substance3).

These changes are formalised in the Draft Resolution to the 26th meeting of the General Conference on
Weights and Measures, reproduced overleaf.

[This is functionally a diplomatic, not scientific, meeting, with binding powers. “Delegates at the
meeting of the CGPM represent the Member States of the BIPM and the Associates of the CGPM, and
each delegate must therefore be designated by their State as being entitled to represent it and to act on
its behalf. This credential must be issued by and bear the signature of an authority with power to bind
the State, such as the Head of State, the Minister of Foreign Affairs (or the head of the competent
diplomatic mission) or the Minister responsible for the questions discussed by the Conference.”]

2This is the value quoted on the web site of the Bureau International des Poids et Mesures,
https://www.bipm.org/en/publications/si-brochure/candela.html. I do not know why it isn’t written in
the conventional style, as 5.40 × 1014 Hz.

3The mass of one mole of a substance is equal to that substance’s molecular weight. For example, the mean molecular
weight of water is 18.015 atomic mass units (amu), so one mole of water weight 18.015 grams.

187



Draft Resolution A – 26th meeting of the CGPM (13-16 November 2018) 

 
 

Draft Resolution A 

 
 
On the revision of the International System of Units (SI) 

 

The General Conference on Weights and Measures (CGPM), at its 26th meeting, 

considering 

− the essential requirement for an International System of Units (SI) that is uniform and 
accessible world-wide for international trade, high-technology manufacturing, human 
health and safety, protection of the environment, global climate studies and the basic 
science that underpins all these,  

− that the SI units must be stable in the long term, internally self-consistent and practically 
realizable being based on the present theoretical description of nature at the highest level, 

− that a revision of the SI to meet these requirements was proposed in Resolution 1 adopted 
unanimously by the CGPM at its 24th meeting (2011) that laid out in detail a new way of 
defining the SI based on a set of seven defining constants, drawn from the fundamental 
constants of physics and other constants of nature, from which the definitions of the seven 
base units are deduced, 

− that the conditions set by the CGPM at its 24th meeting (2011), confirmed at its 25th 
meeting (2014), before such a revised SI could be adopted have now been met, 

decides that, effective from 20 May 2019, the International System of Units, the SI, is the system 
of units in which: 

− the unperturbed ground state hyperfine transition frequency of the caesium 133 atom ∆νCs 
is 9 192 631 770 Hz, 

− the speed of light in vacuum c is 299 792 458 m/s,  

− the Planck constant h is 6.626 070 15 × 10−34 J s,  

− the elementary charge e is 1.602 176 634 × 10−19 C,  

− the Boltzmann constant k is 1.380 649 × 10−23 J/K,  

− the Avogadro constant NA is 6.022 140 76 × 1023 mol−1, 

− the luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd,  
is 683 lm/W,  

where the hertz, joule, coulomb, lumen, and watt, with unit symbols Hz, J, C, lm, and W, 
respectively, are related to the units second, metre, kilogram, ampere, kelvin, mole, and candela, 
with unit symbols s, m, kg, A, K, mol, and cd, respectively, according to Hz = s–1, J = m2 kg s– 2, 
C = A s, lm = cd m2 m –2 = cd sr, and W = m2 kg s–3. 

notes the consequences as set out in Resolution 1 adopted by the CGPM at its 24th meeting 
(2011) in respect of the base units of the SI and confirms these in the following Appendices to this 
Resolution, which have the same force as the Resolution itself, 
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invites the International Committee for Weights and Measures (CIPM) to produce a new edition of 
its Brochure entitled “The International System of Units” in which a full description of the revised 
SI will be given. 

 

Appendix 1. Abrogation of former definitions of the base units  

It follows from the new definition of the SI described above that, effective from 20 May 2019: 

− the definition of the second in force since 1967/68 (13th meeting of the CGPM, 
Resolution 1) is abrogated, 

− the definition of the metre in force since 1983 (17th meeting of the CGPM, Resolution 1)  
is abrogated, 

− the definition of the kilogram in force since 1889 (1st meeting of the CGPM, 1889, 
3rd meeting of the CGPM, 1901) based upon the mass of the international prototype of 
the kilogram is abrogated, 

− the definition of the ampere in force since 1948 (9th meeting of the CGPM) based upon 
the definition proposed by the CIPM (1946, Resolution 2) is abrogated,  

− the definition of the kelvin in force since 1967/68 (13th meeting of the CGPM, Resolution 
4) is abrogated,  

− the definition of the mole in force since 1971 (14th meeting of the CGPM, Resolution 3)  
is abrogated,  

− the definition of the candela in force since 1979 (16th meeting of the CGPM, 
Resolution 3) is abrogated,  

− the decision to adopt the conventional values of the Josephson constant KJ–90 and of the 
von Klitzing constant RK–90 taken by the CIPM (1988, Recommendations 1 and 2) at the 
request of the CGPM (18th meeting of the CGPM, 1987, Resolution 6) for the 
establishment of representations of the volt and the ohm using the Josephson and quantum 
Hall effects, respectively, is abrogated. 

 

Appendix 2. Status of constants previously used in the former definitions  

It follows from the new definition of the SI described above, and from the recommended values of 
the 2017 special adjustment of the Committee on Data for Science and Technology (CODATA) 
on which the values of the defining constants are based, that effective from 20 May 2019: 

− the mass of the international prototype of the kilogram m(K) is equal to 1 kg within a 
relative standard uncertainty equal to that of the recommended value of h at the time this 
Resolution was adopted, namely 1.0 × 10–8 and that in the future its value will be 
determined experimentally, 

− the vacuum magnetic permeability µ0 is equal to 4π × 10–7 H m–1 within a relative 
standard uncertainty equal to that of the recommended value of the fine-structure constant 
α at the time this Resolution was adopted, namely 2.3 × 10–10 and that in the future its 
value will be determined experimentally,  
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− the thermodynamic temperature of the triple point of water TTPW is equal to 273.16 K 

within a relative standard uncertainty closely equal to that of the recommended value of k 
at the time this Resolution was adopted, namely 3.7 × 10–7, and that in the future its value 
will be determined experimentally,  

− the molar mass of carbon 12, M(12C), is equal to 0.012 kg mol–1 within a relative standard 
uncertainty equal to that of the recommended value of NAh at the time this Resolution was 
adopted, namely 4.5 × 10–10, and that in the future its value will be determined 
experimentally.  

 

Appendix 3. The base units of the SI 

Starting from the new definition of the SI described above in terms of fixed numerical values of 
the defining constants, definitions of each of the seven base units are deduced by taking, as 
appropriate, one or more of these defining constants to give the following set of definitions, 
effective from 20 May 2019: 

− The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical 
value of the caesium frequency ∆νCs, the unperturbed ground-state hyperfine transition 
frequency of the caesium 133 atom, to be 9 192 631 770 when expressed in the unit Hz, 
which is equal to s–1. 

− The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical 
value of the speed of light in vacuum c to be 299 792 458 when expressed in the unit m/s, 
where the second is defined in terms of ∆νCs.  

− The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed 
numerical value of the Planck constant h to be 6.626 070 15 × 10–34 when expressed in the 
unit J s, which is equal to kg m2 s–1, where the metre and the second are defined in terms 
of c and ∆νCs. 

− The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed 
numerical value of the elementary charge e to be 1.602 176 634 × 10–19 when expressed in 
the unit C, which is equal to A s, where the second is defined in terms of ∆νCs.  

− The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking 
the fixed numerical value of the Boltzmann constant k to be 1.380 649 × 10– 23 when 
expressed in the unit J K–1, which is equal to kg m2 s–2 K–1, where the kilogram, metre and 
second are defined in terms of h, c and ∆νCs. 

− The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly 
6.022 140 76 × 1023 elementary entities. This number is the fixed numerical value of the 
Avogadro constant, NA, when expressed in the unit mol–1 and is called the Avogadro 
number.  

The amount of substance, symbol n, of a system is a measure of the number of specified 
elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, 
any other particle or specified group of particles. 

− The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is 
defined by taking the fixed numerical value of the luminous efficacy of monochromatic 
radiation of frequency 540 × 1012 Hz, Kcd, to be 683 when expressed in the unit lm W–1, 
which is equal to cd sr W–1, or cd sr kg–1 m–2 s3, where the kilogram, metre and second are 
defined in terms of h, c and ∆νCs. 



Appendix B

Constants

B.1 Some physical constants

Speed of light∗ c 2.99792458 × 108 m s−1

Universal gravitational constant G 6.67384 [80] × 10−11 m3 kg−1 s−2 (= N m2 kg−2)
Planck constant∗ h 6.62607015 × 10−34 m2 kg s−1 (=J s)
Boltzmann constant∗ k 1.380649 × 10−23 m2 kg s−2 K−1 (=J K−1)
Stefan-Boltzmann constant σ 5.670373 [21] × 10−8 W m−2 K−4

Radiation constant a = 4σ/c 7.565731 [28] × 10−16 J m−3 K−4]
Unified atomic mass unit amu, u 1.660538921 [73] × 10−27 kg
Hydrogen mass m(H) 1.00794 amu
Proton mass mP 1.672621777 [74] × 10−27 kg

= 1.007276466812 [90] u
Electron mass me 9.10938291 [40] × 10−31 kg
Electron charge e 1.602176565 [35] × 10−19 C

πe2

mec 2.654 × 10−6 m2 s−1

∗Exact value (defining the SI system)

The main source of these values is the National Institute of Standards and Technology (NIST) listing of
the 2010 recommendations of International Council for Science Committee on Data for Science and
Technology (CODATA); bracketed values are uncertainties in the least significant digits. The hydrogen
mass allows for a 0.015% fractional abundance of deuterium. XXXNeeds May 2019 revision!

B.2 Some astronomical constants

Astronomical unit AU 1.49597870800 × 1011 m (exact)
Parsec pc 3.08567758 × 1016 m (10 × 60 × 60 × 360/(2π) AU)
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The AU is defined as a specific value by the International Astronomical union. The ‘official’ (IAU
recommended) symbol for the astronomical unit is au, but AU is more widely used

B.2.1 Solar parameters

No solar parameter is a ‘constant’ in principle, because of variability on evolutionary, or shorter,
timescales, but pragmatism dictates adoption of specific values. At its 2015 General Assembly, the
International Astronomical Union adopted a set of ‘nominal conversion constants’, including reference
values for solar parameters

The solar constant is the (very slightly variable) energy flux from the Sun measured at a distance of
1 AU; numerically,

solar constant, C� = 1360.8 [5] J m−2 s−1.

according to Kopp & Lean (2011; Geophys. Res. Letters, 38, L01706); earlier determinations clustered
around ∼ 1368 J m−2 s−1. By reference to L = 4πd2

�C� (where d� ' 1 au), the ‘nominal solar
luminosity’ is then defined to be

LN
� = 3.828 × 1026 W

The nominal solar radius is

RN
� = 6.957 × 108 m;

(following Haberreiter et al. 2008, ApJ, 675, L53). Since L = 4πR2σT 4
eff

, we find the (nominal)
effective temperature of the Sun to be

TN
eff� = 5772 K

The solar mass follows from equating centrifugal and gravitational accelerations of the Earth in orbit,

M⊕v2
⊕

d�
=

GM�M⊕
d2
�

.

Because G is one of the least precisely determined constants, the uncertainty on GM� is around five
orders of magnitude less than the uncertainty on M�. The adopted nominal solar mass is therefore
expressed as as

(GM)N
� = 1.327 124 4 × 1020 m3 s−2

such that an object’s mass can be expressed in nominal solar masses,M�, by taking the ratio
(GM)object/(GM)N

� .
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Where a specific numerical value is required, a reasonable choice is

M� = 1.98855 [24] × 1030 kg.

The mean solar density is then

ρ� =
M�

4/3πR3
�

= 1.4 × 103 kg m−3

(i.e., about the same as liquid water on the surface of the Earth). Finally, the mean number density is

n� =
ρ

µm(H)
' 1.4 × 1030 m−3

(using a mean molecular weight of µ ' 0.61).
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Appendix C

Black-body radiation

In astrophysics, a radiation field can often be usefully approximated by that of a ‘black body’, for which
the intensity is given by the Planck function:

Iν = Bν(T ) =
2hν3

c2

{
exp

(
hν
kT

)
− 1

}−1

[J m−2 s−1 Hz−1 sr−1]; or (C.1)

Iλ = Bλ(T ) =
2hc2

λ5

{
exp

(
hc
λkT

)
− 1

}−1

[J m−2 s−1 m−1 sr−1] (C.2)

(where Bν dν = Bλ dλ).

C.1 Derivation

The Planck function can be obtained from consideration of Bose-Einstein statistics (photons are
bosons!), by counting the degenerate states for a given energy. The energy density per unit frequency
(i.e., the specific energy density) is 4πBν/c (§3.6), which we can express as

4π
c

Bν = Dν f (ν) E (C.3)

where Dν is the number of degenerate states per unit volume for a given energy E, and f (ν) is the
probability of occupying that energy.

For a finite volume V characterized by length L, the energy states that a boson (photon) can occupy are
quantized. From Bose-Einstein statistics, and using E = hν, we have

f (ν) =

[
exp

{
hν
kT

}
− 1

]−1

.

To count the number of degenerate states that all have the same energy for some differential frequency
interval dν, we can calculate the volume these states occupy in phase space. Since E = hν, the surface
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area of a shell of constant energy is 4πν2; and since each quantized state occupies a volume (c/L)3 in
phase space, the total number of states is given by:

DνV dν = 2
4πν2 dν
(c/L)3

where V = L3 and the factor 2 arises because photons can have two different polarizations. Substituting
these expressions back into eqtn. C.3 gives

Bν =
2hν3

c2

[
exp

{
hν
kT

}
− 1

]−1

.

C.2 Flux

We have seen that

Fν = 2π

+1∫
−1

Iν(µ)µ dµ. (3.8)

If we have a surface radiating like a black body then Iν = Bν(T ), and there is no µ dependence, other
than that the energy is emitted over the limits 0 ≤ µ ≤ 1; thus the physical flux for a black-body radiator
is given by

Fν = F+
ν = 2π

+1∫
0

Bν(T )µ dµ = Bν
2πµ2

2

∣∣∣∣∣∣+1

0

= πBν. (C.4)

(cp. eqtn. 3.10: Fν = πIν)

The total radiant energy flux is obtained by integrating eqtn. (C.4) over frequency,∫ ∞

0
Fν dν =

∫ ∞

0
πBν dν

=

∫ ∞

0

2πhν3

c2

{
exp

(
hν
kT

)
− 1

}−1

dν. (C.5)

We can solve this by setting x = (hν)/(kT ) (whence dν = [kT/h] dx), so∫ ∞

0
Fν dν =

(
kT
h

)4 2πh
c2

∫ ∞

0

x3

exp(x) − 1
dx

The integral on the right-hand side is now a standard form, which has the solution π4/15; hence∫ ∞

0
Fν dν =

(
kπ
h

)4 2πh
15c2 T 4 (C.6)

≡ σT 4 (C.7)
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where σ is the Stefan-Boltzmann constant,

σ =
2π5k4

15h3c2 = 5.67 × 10−5 [J m−2 K−4 s−1].

C.3 Approximate forms

There are two important approximations to the Planck function which follow directly from eqtn. C.1:

Bν(T ) '
2hν3

c2

{
exp

(
hν
kT

)}−1

for
hν
kT
� 1 (C.8)

(Wien approximation), and

Bν(T ) '
2ν2kT

c2 for
hν
kT
� 1 (C.9)

(Rayleigh-Jeans approximation; exp(hν/kT ) ' 1 + hν/kT ).

The corresponding wavelength-dependent versions are, respectively,

Bλ(T ) '
2hc2

λ5

{
exp

(
hc
λkT

)}−1

,

Bλ(T ) '
2ckT
λ4 .

The Wien approximation to the Planck function is very good at wavelengths shortwards of and up to the
peak of the flux distribution; but one generally needs to go something like ∼ 10× the peak wavelength
before the long-wavelength Rayleigh-Jeans approximation is satisfactory.

C.4 Wien’s Law

Wien’s displacement law (not to be confused with the Wien approximation!) relates the black-body
temperature to the wavelength of peak emission. To find the peak, we differentiate eqtn. (C.2) with
respect to wavelength, and set to zero:

∂B
∂λ

= 8hc
 hc
λ7kT

exp {hc/λkT }(
exp {hc/λkT } − 1

)2 −
1
λ6

5
exp {hc/λkT } − 1

 = 0

whence

hc
λmaxkT

(
1 − exp {−hc/λmaxkT }

)−1
− 5 = 0
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Figure C.1: Upper panel: Flux distributions for black bodies at several different temperatures. A hotter black body radiates

more energy at all wavelengths than a cooler one, but the increase is greater at shorter wavelengths. The peak of the black-body

distribution migrates blueward with increasing temperature, in accordance with Wien’s law (also plotted).

Lower panel: Flux distribution for the Sun (actually, a Kurucz solar model) compared with a black-body distribution at the

same temperature. The black body is a reasonable, though far from perfect, match to the model, the main differences arising

because of line blocking in the sun at short wavelengths. This energy must come out elsewhere, and appears as an excess over

the black body at long wavelengths.

(Flux units are 107 J m−2 s−1 µm−1.)
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An analytical solution of this equation can be obtained in terms of the Lambert W function; we merely
quote the result,

λmax

µm
=

2898
T/K

We therefore expect the Sun’s output to peak around 500 nm (for Teff = 5772 K) – near where the
human eye has peak sensitivity, for obvious evolutionary reasons.
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Appendix D

LTE: Saha equation

Fairly obviously, in Local Thermodynamic Equilibrium (LTE) it is assumed that all thermodynamic
properties in a small volume have the thermodynamic equilibrium values at the local values of
temperature and pressure.

Specifically, this applies to quantities such as the occupation numbers of atoms, the opacity, emissivity,
etc. The LTE assumption is equivalent to stating that

1. the electron and ion velocity distributions are Maxwellian,

dn(3)
d3

= n
(

m
2πkTk

)3/2

exp
{
−m32

2kTk

}
for number density n of particles of mass m at kinetic temperature Tk;

2. the photon source function is given by the Planck function at the local temperature (i.e.,
S ν = Bν, and jν = kνBν).

3. the excitation equilibrium is given by the Boltzmann equation

n j

ni
=

g j

gi
exp

{
−(E j − Ei)

kT

}
(D.1)

4. the ionization equilibrium is given by the Saha equation

nen2,1

n1,i
=

2g2,1

g1,i
exp

{
−χ1,i

kT

} (2πmekT )3/2

h3 (D.2)

where 1, i, 2, 1 denote levels i, 1 in ionization stages 1, 2.

One might augment this list with the perfect-gas equation of state, P = nkT , but since this applies under
many circumstances where LTE doesn’t hold, it’s not usually mentioned in this context.
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If a process is purely collisional, conditions are, naturally, determined on a purely local basis locally,
and LTE applies. We have already encountered one such situation where LTE is a good approximation:
free-free emission results from a purely collisional process, justifying our adoption of S ν = Bν
(Section ??).

If radiation plays a role, then provided the photon and particle mean free paths are short compared to
the length scales over which conditions change significantly (i.e., if the opacity is high), then we can
again expect LTE to be a reasonable assumption; this is a good approximation in stellar interiors.

In stellar atmospheres the LTE approximation may be a poor one, as photon mean free paths are
typically larger than those of particles. Thus one region can be affected by the radiation field in another
part of the atmosphere (e.g., a deeper, hotter region). As a rule of thumb, therefore, LTE is a poor
approximation if the radiation field is important in establishing the ionization and excitation equilibria
(as in hot stars, for example). It’s more likely to be acceptable when particle densities are high and the
radiation field is relatively weak; for stars, this means higher gravities (i.e., main-sequence stars rather
than supergiants) and cooler effective temperatures. When LTE breaks down, we have a ‘non-LTE’
(nLTE) situation, and level populations must be calculated assuming statistical equilibrium
(section J.0.2).

D.1 The Saha Equation

The Boltzmann Equation gives the relative populations of two bound levels i and j, in some initial (or
‘parent’) ionization stage ‘1’:

n1, j

n1,i
=

g1, j

g1,i
exp

{
−(E1, j − E1,i)

kT

}
(D.1)

where E1,i & E1, j are the level energies (measured from the ground state, E1,1 = 0), and g1,i & g1, j are
their statistical weights (2J + 1, where J is the total angular-momentum quantum number).

To generalize the Boltzmann eqtn. to deal with collisional ionization to the next higher (or ‘daughter’)
ionization stage ‘2’, we identify the upper level j with a continuum state; n1, j, the number of parent ions
in excitation state j, then equates with n2,1(3), the number of ionized atoms where the detached electron
has velocity 3.

(Note that ionization stages ‘1’ and ‘2’ always represent any two consecutive stages – for example, H0

and H+, or C2+ and C3+.)
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The total statistical weight of the ionized system is given by the combined statistical weights1 of the newly
created ion and the electron, i.e., g2ge(3); while the relevant energy is the sum of the ionization energy and the
kinetic energy of the free electron. Thus we have

n2,1(3)
n1,i

=
g2ge(3)

g1,i
exp

−(χ1,i + 1
2 me3

2)
kT

 (D.3)

where χ1,i = E∞ − E1,i is the ionization potential for level i in the parent species.

An aside: The statistical weight of a free electron. The statistical weight of a free electron is just the
probability of finding it in a specific cell of ‘phase space’. Since the state of a free particle is specified by three
spatial coördinates x, y, z and three momentum coördinates p(x), p(y), p(z), the number of quantum states (for
which the statistical weights are each 1) in an element of phase space,

dx dy dz · dp(x) dp(y) dp(z) = dN

is given by

ge(3) =
2 dN

h3 =
2
h3 dx dy dz · dp(x) dp(y) dp(z)

where h is Planck’s constant and the factor 2 arises because the electron has two possible spin states. The
statistical weight per unit volume is thus

2
h3 dp(x) dp(y) dp(z)

for a single electron. However, there may be other free electrons, from other ions, which occupy some of the
available states in the element of phase space dN. If the number density of electrons is ne then the effective
volume available to a collisionally ejected electron is reduced by a factor 1/ne. Thus the statistical weight
available to a single free electron is

ge(3) =
2 dp(x) dp(y) dp(z)

neh3 .

Furthermore, if the velocity field is isotropic, the ‘momentum volume’ can be replaced simply by its
counterpart in spherical coördinates,

dp(x) dp(y) dp(z) = 4πp2 dp

Using these results we can write eqtn. (D.3) as

nen2,1(3)
n1,i

=
2gi

h3g1,i
exp

−
(
χ1,i + 1

2 me3
2
)

kT

 4πp2 dp

but the momentum p = me3; i.e., 1
2 me3

2 = p2/(2me), whence

nen2,1(3)
n1,i

=
2g2

h3g1,i
exp

{
−χ1,i

kT

}
exp

{
−p2

2mekT

}
4πp2 dp.

Since we’re interested in the ionization balance (not the velocity distribution of the ionized electrons), we
integrate over velocity to obtain the total number of daughter ions:

nen2,1

n1,i
=

2g2

h3g1,i
exp

{
−χ1,i

kT

}
4π

∞∫
0

p2 exp
{
−p2

2mekT

}
dp.

We can then use result of a standard integral,
∞∫

0

x2 exp
(
−a2 x2

)
dx =

√
π/

(
4a3

)
to obtain

1The statistical weight is a form of probability, and the probability of ‘A and B’, P(A+B), is the product P(A)P(B).
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nen2,1

n1,i
=

2g2

g1,i
exp

{
−χ1,i

kT

} (2πmekT )3/2

h3 (D.2)

This is one common form of the Saha Equation (often expressed in terms of the ground state of the
parent ion, n1,1).

D.2 Partition functions

The version of the Saha equation given in eqtn. (D.2) relates populations in single states of excitation
for each ion. Generally, we are more interested in the ratios of number densities of different ions
summed over all states of excitation – i.e., the overall ionization balance. We determine this by defining
the partition function as

U =
∑

n

gn exp (−En/kT )

(an easily evaluated function of T ), whence

nen2

n1
=

2U2

U1

(2πmekT )3/2

h3 exp
{
−χ1

kT

}
(D.4)

where we use χ1, the ground-state ionization potential of the parent atom, as it is to this that the
partition function is referred (i.e., E1,1 ≡ 0).

Since the electron pressure is Pe = nekT we can also express the Saha equation in the form

n2

n1
=

2U2

U1

(2πme)3/2

h3

(kT )5/2

Pe
exp

{
−χ1

kT

}
(D.5)

D.2.1 An illustration: hydrogen

The Balmer lines of hydrogen, widely observed as absorption lines in stellar spectra, arise through
photoexcitation from the n = 2 level of neutral hydrogen. To populate the n = 2 level, we might suppose
that we need temperatures such that kT ' E1,2 = 10.2eV; i.e., T ' 105K. However, the Hα line strength
peaks in A0 stars, which are much cooler than this (T ∼ 104K). Why? Because we need to consider
ionization as well as excitation. We therefore need to combine the Saha and Boltzmann equations to
obtain the density of atoms in a given state of excitation, for a given state of ionization.

We express the Boltzmann equation, eqtn. (D.1), in terms of the partition function U:

n1,2

n1
=

g1,2

U1
exp

(
−E1,2

kT

)
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where n1 is the number density of H0 atoms in all excitation states and E1,2 is the excitation energy of
the n = 2 level (10.2 eV); that is,

n1,2 =
g1,2

U1
exp

(
−E1,2

kT

)
n1.

However, the total number of hydrogen nuclei is n(H) = n1 + n2 = n1(1 + n2/n1); that is,
n1 = n(H)(1 + n2/n1)−1. Using this, and n2/n1 from eqtn. (D.4), we find

n1,2 =
g1,2

U1
exp

(
−E1,2

kT

) (
1 +

[
2U2

n1U1

(2πmekT )3/2

h3 exp
{
−χ1

kT

}])−1

n(H)

=
g1,2

U1
exp

(
−E1,2

kT

) (
1 +

[
2U2

n1U1

(2πme)3/2

h3

(kT )5/2

Pe
exp

{
−χ1

kT

}])−1

n(H)

We can now see why the Balmer lines peak around 104K: while higher temperatures give larger
populations n1,2/n(H0), they give smaller populations n(H0)/n(H). The overall result is that n1,2/n(H)
peaks around 10kK.

The Saha equation also gives an explanation of why supergiant stars are cooler than main-sequence
stars of the same spectral type. Spectral types are defined by ratios of lines strengths; e.g., O-star
subtypes are defined by the ratio (He ii λ4542)/(He i λ4471), which in turn traces the ratio He+/He0. Of
course, higher temperatures increase the latter ratio. However, a supergiant star has a lower surface
gravity (and atmospheric pressure) than a main-sequence star. From eqtn. (D.5) we see that a lower
pressure at the same temperature gives rise to a larger ratio n2/n1 (essentially, the rate of recombinations
is lower), so for two stars of the same temperature, the supergiant has an earlier spectral type (or,
equivalently, at the same spectral type the supergiant is cooler).
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Appendix E

Magnitude systems

The brightness of astronomical sources is almost universally measured in ‘magnitudes’. Practising
astronomers are so familiar with this system that they often overlook its idiosyncracies: it has no units,
runs the ‘wrong way’ (brighter sources have smaller magnitudes), and is logarithmic in nature. These
oddities arise for historical reasons, dating back to when Hipparchus and Ptolemy first quantified stellar
brightnesses. They assigned the brightest stars to ‘the first magnitude’ (the handful of very brightest
stars are assigned negative magnitudes today), and sequentially fainter stars larger magnitudes; the
faintest stars visible to the naked eye under good conditions are around magnitude 6.

The magnitude scale in modern use dates back to the 1850s, when N.R. Pogson proposed that a
magnitude difference of 5 magnitudes should correspond to a brightness (flux) ratio of exactly 100,
whence

mλ = −2.5 log Fλ + Cλ. (E.1)

The normalizing constant Cλ has to be determined observationally, by measuring the flux for stars of
known magnitude. This is a challenging task, not only because of the difficulty in measuring the fluxes,
but also because ‘the’ magnitude of a star is also an observed quantity; it is not only subject to to
measurement errors, but is also fundamentally arbitrary. For example, Pogson initially calibrated his
system by choosing to define Polaris as being exactly magnitude 2.0; we now know that Polaris is
slightly variable in brightness, and modern systems typically derive ultimately from a standard whereby
Vega was assigned magnitude 0.0.1

Variable; colour dependence.

Different observers have different colour sensitivities; and even a single observer has different colour
sensitivities as a function of time and brightness (the Purkinje effect).

1Vega is too bright to be directly observed with modern instruments on large telescopes, and subsequent refinements include
development of network of standards. Within that framework, ‘the’ magnitude of every star becomes an observational quantity;
Vega has V ' 0.03.
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Magnitudes also expressed in frequency (AB magnitudes; Oke & Gunn 1983)
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Appendix F

Initial Mass Function

The Initial Mass Function (IMF) describes the distribution of stellar masses at birth. Observationally,
this has to be derived indirectly; typically, the present-day luminosity function (PDLF; the number of
stars as a function of luminosity) is converted to a present-day mass function (PDMF), from which the
IMF is inferred. (Of course, the PDMF differs from the IMF, if only because high-mass stars ‘burn out’
quickly and disappear from the PDMF while low-mass stars live on.) The first step is subject to
numerous difficulties in assembling suitable datasets and in understand biasses and selection effects;
while subsequent stages in the analysis require evolutionary models that take into account binary
evolution and a host of other factors.

F.1 Formulating the IMF

We define the initial mass spectrum (or mass number function), Φ(M), such that Φ(M) dM is the
probability of creating a star in the mass range M1 to M2; that is, the number of stars born with masses
between M and M + dM is

N(M1,M2) =

∫ M2

M1

Φ(M) dM

(modulo some overall scaling factor). Differentiating emphasizes that this mass spectrum is just the
number of stars per unit mass interval:

dN
dM

= Φ(M).

As well of the number of stars between some mass limits, it’s often convenient to think in terms ofM,
the total stellar mass within those limits. We get this simply by multiplying the number of stars by the
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mass per star:

M(M1,M2) =

∫ M2

M1

MΦ(M) dM ≡
∫ M2

M1

ξ(M) dM

where the function ξ(M) is commonly cited as ‘the’ Initial Mass Function. Although ξ(M) represents
the initial mass distribution, it can readily be related back to the number of stars:

ξ(M) = MΦ(M) = M
dN
dM

= M
d(ln M)

dM
dN

d(ln M)
=

dN
d(ln M)

Warning! The symbol ξ is almost always employed in discussions of the mass function, but may be
used to refer the mass number function, here designated as Φ.

F.2 Representation

The seminal study of the IMF was published by Edwin Salpeter,1 who found that, empirically, the IMF
can be reasonably well approximated by a power law,

ξ(M) ' ξ0M−Γ

(where the constant ξ0 simply reflects the total number – or mass – of stars under consideration). With
this formulation, the mass spectrum is just

Φ(M) =
ξ(M)

M
= ξ0M−Γ−1

≡ Φ0M−α.

The ‘Salpeter IMF’, originally established over the mass range 0.4 . M/M� . 10, has Γ = 1.35
(α = 2.35). Subsequent studies suggest that little revision this power-law index is required, and also
indicate that it is a reasonable approximation to higher masses than Salpeter was originally able to study.
(For lower-mass stars and brown dwarfs the slope appears to flatten, to Γ ' 0.3.) Moreover, the IMF
appears remarkably invariant in a wide range of environments (e.g., high or low density, or high or low
metallicity); an extensive review2 concluded that “there is no clear evidence that the IMF varies strongly
and systematically as a function of initial conditions”, although others may dispute that conclusion.

The Salpeter IMF is therefore a satisfactory approximation for many purposes, and certainly for
order-of-magnitude estimates. For more detailed work, a ‘broken power law’ may be used; a
formulation by Kroupa is widely employed.

11955ApJ...121..161S
2Bastian, Covey & Meyer; 2010ARA&A..48..339B.
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F.3 Some implications

The number of stars between any two mass limits is

N(M1,M2) =

∫ M2

M1

Φ0M−α dM,

=
ξ0

1.35

(
M−1.35

1 − M−1.35
2

)
for a Salpeter IMF; and the integrated mass within these limits is

M(M1,M2) =

∫ M2

M1

ξ0M−Γ dM

=
ξ0

0.35

(
M−0.35

1 − M−0.35
2

)
;

the negative exponent shows that the total mass is dominated by low-mass stars (for any Γ > 1).

For a mass–luminosity relationship L ∝ Mβ, the integrated luminosity over the same mass range is

L(M1,M2) ∝
∫ M2

M1

MβM−Γ dM,

∝ M2.15
2 − M2.15

1

for a Salpeter IMF and β ' +3.5 (§12.4); that is, in contrast to the mass, the luminosity is dominated by
high-mass stars (for any β > Γ).
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Appendix G

Nuclear reactions in stars

G.1 Introduction

In general, nuclear processes in stars involve fission of a nucleus, or (more usually in ‘normal’
evolutionary phases), the fusion of two nuclei. Through all these processes, key physical quantities are
conserved:

• the baryon number (the number of protons, neutrons, and their antiparticles);

• the lepton number (electrons, neutrinos, related light particles, and their antiparticles);

• charge; and

• total mass–energy.

Consider two types of nuclei, A and B, number densities n(A), n(B). The rate at which a particular
(nuclear) reaction occurs between particles moving with relative velocity 3 is

r(3) = n(A) n(B) 3σ(3) (G.1)

(per unit volume per unit time) where σ(3) is the cross-section for the reaction. Of course, we need to
integrate over velocity to get the total reaction rate:

r = n(A) n(B)
∫
3σ(3) f (3) d3

≡ n(A) n(B) 〈σ(3) 3〉 [ m−3 s−1] (G.2)

where f (3) is the (Maxwellian) velocity distribution, and the angle brackets denote a weighted average
(i.e., the integral in the first part of eqtn. G.2).
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Since the reaction destroys A (and B), we have

∂n(A)
∂t

= −n(A) n(B) 〈σ(3) 3〉 ; (G.3)

and the number density of species A falls with time as

n(A, t) = n0(A) exp {−n(B) 〈σ(3) 3〉 t} (G.4)

which defines a characteristic (e-folding) timescale

τ =
1

n(B) 〈σ(3) 3〉
. (G.5)

Finally, the total energy generated through this reaction, per unit mass per unit time, is

ε =
Q r
ρ

=
n(A) n(B)

ρ
Q 〈σ(3) 3〉 [J kg−1 s−1] (G.6)

where Q is the energy produced per reaction and ρ is the mass density.

G.2 Tunnelling

Charged nuclei experience Coulomb repulsion at intermediate separations, and nuclear attraction at
small separations. In stellar cores the high temperatures give rise to high velocities, and increased
probability of overcoming the Coulomb barrier. For nuclear charge Z (the atomic number), the energy
needed to overcome the Coulomb barrier is

EC '
Z1Z2e2

r0
(G.7)

( ' 2 × 10−13 J, ' 1 MeV, for Z1 = Z2 = 1) (G.8)

where r0 ' 10−15m is the radius at which nuclear attraction overcomes Coulomb repulsion for proton
pairs.

In the solar core, Tc ∼ 1.5×107K; that is, E(= 3/2kT ) ' keV, or ∼ 10−3EC. This energy is only sufficient
to bring protons to within ∼ 103r0 of each other; this is much too small to be effective, so reactions only
occur through a process of “quantum tunneling” (barrier penetration). In this temperature regime the
rate of nuclear energy generation is well approximated by a power-law dependence on temperature,

ε ' ε0ρTα (G.9)

where α ' 4.5 for proton-proton reactions in the Sun [Section G.4; ε0 ∝ n2(H)], and α ' 18 for CN
processing [Section G.5; ε0 ∝ n(H)n(C,N)].
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Figure G.1: Upper section: a schematic plot of the potential between two charged nucleons as a function of separation. At
‘large’ separations (& 10−15 m), the repulsive Coulomb force is given by eqtn. (G.8); classically, particles cannot come closer
than the point r1 at which the relative kinetic energy corresponds to the repulsive potential. Quantum-mechanical tunneling
allows the nucleons to approach closer, to separation r2, at which point the strong nuclear force dominates.
The lower panel expresses this tunnelling schematically. The (square of the) amplitude of the wave function is a measure of the
probability of a particle being in a particular location; the amplitude of the wave function decreases exponentially between r1

and r2, but does not fall to zero. (See Aside 7.1 for further details.)

[Note that eqtn. (G.9) characterizes the rate of energy generation per unit mass (or, if you like, per
nucleon). Although density appears here as a simple linear multiplier, reference to eqtn. G.6 reminds us
that, like nearly all ‘collisional’ processes, the energy generation rate per unit volume – or the
probability of a given nucleus undergoing fusion – depends on density squared.]

Aside 7.1: The Gamow Peak

As illustrated in Fig. G.1, ‘tunnelling’ can occur to allow fusion to occur at particle energies which classical mechanics would
indicate to be too low to overcome the Coulomb barrier. For higher temperatures (and larger kinetic energies), particles will
come closer together (r1 approaches r2), the decay of the wave function is reduced, and so the amplitude of the wave function
in the region r < r2 becomes larger – that is, the tunnelling probability increases as the kinetic energy of the incoming nucleus
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Figure G.2: The main energy-dependent factors determining two-body reaction rates are the numbers of reagents as a function

of energy (the Maxwellian velocity distribution) and the tunnelling probability of penetration. The product of these two terms

gives the energy distribution of particles participating in fusion. These factors are illustrated here, on arbitrary vertical scales,

for the fusion of two protons in the solar core (Gamow energy EG = 290kT for T = 2×107 K; E0 = 4.2kT , 1/e width ∆ = 4.8kT ).

See Aside 7.1.

increases.

Obtaining the probability of barrier penetration, pp, for given energy, is a standard problem in wave mechanics. We simply
quote the result that the probability of penetration varies exponentially with the ratio of kinetic energy to barrier size,

pp ∝ exp
{
−

( EG

E

)1/2}
(A-7.1)

with the ‘Gamow energy’ EG (unnamed and written as b2 in some sources) given by

EG = 2mRc2 (παZ1Z2)2 (= 493 keV for proton-proton fusion), (A-7.2)

where α is the fine structure constant,

α =
e2

4πε0~c
'

1
137

. (A-7.3)

and mR is the ‘reduced mass’,

mR =
m1m2

m1 + m2

for particles of mass m1, m2 (' A1m(H), A2m(H)) of charge Z1, Z2. (Using the reduced mass means that velocities and kinetic
energies are measured with reference to the centre of mass of the particles involved.)

The fusion cross-section σ(v) (eqtn G.1) is evidently dependent on this penetration probability. We also expect it to depend on
the effective size, or ‘target area’, of the particles; this geometrical factor is proportional to πλ2, where λ is the de Broglie
wavelength, λ2 ∝ 1/E. The intrinsic properties of the nuclei must also be involved; these will be constant, or slowly varying
functions of energy, in most circumstances (although resonances may occur). We therefore write the total reaction
cross-section in the form

σ(E) =
S (E)

E
exp

{
−

( EG

E

)1/2}
(A-7.4)
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where S (E) encapsulates the nuclear physics of the actual fusion process.

At any given temperature, the number of particles in a Maxwellian velocity distribution falls off exponentially with increasing
energy (eqtn. ??); that is, the probability of encountering a particle with energy E at kinetic temperature T is

f (E) dE =
2
√
π

E
kT

exp
{
−

E
kT

} dE
(kT E)1/2 (A-7.5)

These two competing factors – the increasing probability of penetration with increasing energy (eqtn. A-7.1) and the
decreasing number of particles with increasing energy (eqtn. A-7.5) – mean that there is a limited range of energies at which
most reactions occur. This is illustrated in Fig. G.2; the product of the two exponential terms leads to the ‘Gamow peak’,
where the probability of fusion occuring is at a maximum.1

To explore this in greater detail, we write the reaction rate per particle pair, eqtn. G.2, as

〈σ(3) 3〉 =

∫ ∞

0
σ(E)3 f (E)dE

where σ(E), 3 are particle cross-sections and velocities at energy E; from eqtns. (A-7.4) and (A-7.5), and using E = 1
2 mR3

2,

〈σ(3) 3〉 =

∫ ∞

0

S (E)
E

exp
{
−

( EG

E

)1/2} √
2E
mR

2
√
π

E
kT

exp
{
−

E
kT

} dE
(kT E)1/2 (A-7.6)

=

(
8

πmR

)1/2 1
(kT )3/2

∫ ∞

0
S (E) exp

{
−

E
kT
−

( EG

E

)1/2}
dE (A-7.7)

at some fixed temperature T . Eqtn. (A-7.7) is the integral over the Gamow peak; the larger the area, the greater the reaction
rate.

The Gamow peak is appropriately named in that it is indeed quite strongly peaked; it is therefore a reasonable approximation
to take the S (E) term as locally constant. In that case, the integrand peaks at energy E0, when

d
dE

{
E

kT
+

( EG

E

)1/2}
=

1
kT
−

1
2

(
EG

E3
0

)1/2

= 0;

i.e.,

E0 =

(
kT
√

EG

2

)2/3

. (A-7.8)

=
[√

2(παkc)2 mR (Z1Z2T )2
]1/3

E0, the location of the Gamow peak, is the most effective energy for thermonuclear reactions; it greatly exceeds kT , the typical
thermal energy, but falls well below the Gamow energy of the Coulomb barrier.

There is no simple analytical solution for the width of the peak, but one common (and reasonable) approach is to approximate
the exponential term in the integral (eqtn. A-7.7) with a gaussian centred on E0. Conventionally, in this context ‘the’ width is
not characterized by the gaussian ‘σ’ parameter, but rather by ∆, the full width at 1/e of the peak value (so ∆ ≡ 2

√
2σ); thus we

need to solve for

exp
{
−

E
kT
−

( EG

E

)1/2}
' C exp

−
(

E − E0

∆/2

)2
 . (A-7.9)

Requiring the two sides to be equal at E = E0 we immediately find

C = exp
{
−

E0

kT
−

(
EG

E0

)}
,

= exp
{
−

3E0

kT

}
(from eqtn. A-7.8)

1Clearly, the area under the Gamow peak determines the total reaction rate.
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while requiring the curvatures (second derivatives) on either side of eqtn. A-7.9 to be equal gives, after some algebra,

∆ =

√
16
3

E0kT .

The total reaction rate depends on the integrated area under the Gamow peak; again using a gaussian approximation to the
peak, and constant S (E) across the peak, then from eqtn. (A-7.7), we have

〈σ(3) 3〉 =

(
8

πmR

)1/2 S (E0)
(kT )3/2 exp

{
−

3E0

kT

}∫ ∞

0
exp

−
(

E − E0

∆/2

)2
 dE, (A-7.10)

'

(
8

πmR

)1/2 S (E0)
(kT )3/2 exp

{
−

3E0

kT

}
∆
√
π

2

(where, in order to perform the integration analytically, the limits have been extended from 0/ +∞ to −∞/ +∞; the error thus
introduced is negligible provided that E0 > ∆/2). Bowers & Deeming give a mathematical development from this point which
leads to a demonstration that ε ' ε0ρTα (eqtn. G.9).

Furthermore, substituting eqtn. (A-7.8) into eqtn. (A-7.7) we obtain

〈σ 3〉 ∝ exp[−(EG/kT )1/3].

G.3 The mass defect and nuclear binding energy

The mass of any nucleus is less than the sum of the separate masses of its protons and neutrons. The
binding energy of a particular isotope is the energy corresponding to the ‘missing’ mass (or mass
defect), and is the energy produced in forming that isotope from its raw ingredients; equivalently, it is
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the amount of energy needed to break it up into protons and neutrons.2 The binding energy peaks in the
iron group, with 62Ni the most tightly-bound nucleus, followed by 58Fe and 56Fe;3 this is the basic
reason why iron and nickel are very common metals in planetary cores, since they are produced as end
products in supernovae.

For atomic masses A & 60, energy release is through fission (generally involving much less energy).

For a nucleus with Z protons, N(= A − Z) neutrons, and mass m(Z,N) the binding energy is therefore

Q(Z,N) =
[
Zmp + Nmn − m(Z,N)

]
c2 (G.10)

(where mp, mn are the proton, neutron masses), and the binding energy per baryon is

Q(Z,N)/(Z + N).

Converting ‘MeV per baryon’ to ‘J kg−1’, we find that burning protons into helium yields

H→ He: 6.3 × 1014 J kg−1

but

H→ Fe: 7.6 × 1014 J kg−1;

that is, burning H to He alone releases 83% of the total nuclear energy available per nucleon.

Physical processes

To do –

Nuclear models (liquid-drop, shell)

Line of stability (neutron, proton drip lines)

2The binding energy explains why the masses of the proton and neutron are both larger than the ‘atomic mass unit’, or amu;
the amu is defined to be 1/12 the mass of 12C, but each nucleon in that isotope has given up almost 1% of its mass in binding
energy.

3Many sources cite 56Fe as the most tightly bound nucleus; see M.P. Fewell, Am.J.Phys., 63, 653, 1995 for a discussion
which lays the blame for this misconception squarely at the door of astrophysicists!
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G.4 Hydrogen burning – I: the proton–proton (PP) chain

G.4.1 PP–I

Step Process Energy Solar
Release Timescale

(1) p + p → 2D + e+ + νe 1.44 MeV † 7.9 × 109 yr
(2) 2D + p → 3He 5.49 MeV 1.4s

6.92 MeV ×2

(3a) 3He +3 He → 4He + p + p 12.86 MeV 2.4 × 105 yr
26.72 MeV

†Includes 1.02 MeV from e+ + e− → 2γ

Reaction (1) is very slow because it involves the weak interaction,4 which is required to operate during
the short period when protons are close together.

Reactions (2) and (3a) involve the strong interaction and in consequence are much faster.

[Note that reaction (3a) is preferred to

3He + p → 4He + e+ + νe,

even though protons vastly outnumber 3He particles, because this again involves the weak interaction (the νe is the giveaway).]

Reaction (1) occurs twice for each 4He production, each time generating an electron neutrino with
energy 0.26 MeV. These leave the Sun without further interaction, so the energy available for heating is
26.2 MeV (26.72 − 2 × 0.26 MeV).

G.4.2 PP–II, PP–III

There are two principal secondary channels in the proton-proton chain, each catalysed by a pre-existing
α particle (4He nucleus):

PP–II (follows steps 1 & 2, which yield 6.92 MeV):

4i.e., involves β decay; in this case β+ decay, p+ → n0 + e+ + νe (cp. β− decay, n0 → p+ + e− + νe). To go on to form a
deuterium, this decay must occur within ∼ 10−15 m of another proton; that is, step (1) is itself actually a two-step process.
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Step Process Energy Solar
Release Timescale

(1) p + p → 2D + e+ + νe 1.44 MeV † 7.9 × 109 yr
(2) 2D + p → 3He 5.49 MeV 1.4s

(3b) 3He + 4He → 7Be 1.59 MeV 9.2 × 105 yr
(4b) 7Be + e− → 7Li + νe 0.86 MeV 0.39 yr
(5b) 7Li + p → 4He + 4He 17.35 MeV 570s

26.72 MeV
†Includes 1.02 MeV from e+ + e− → 2γ

In this case, neutrino losses average 0.80 MeV.

PP–III (follows steps 1, 2, and 3b):

Step Process Energy Solar
Release Timescale

(1) p + p → 2D + e+ + νe 1.44 MeV † 7.9 × 109 yr
(2) 2D + p → 3He 5.49 MeV 1.4s

(3b) 3He +4 He → 7Be 1.59 MeV 9.2 × 105 yr
(4c) 7Be + p → 8B 0.14 MeV 66 yr
(5c) 8B → 8Be∗ + e+ + νe 16.04 MeV † 1 s
(6c) 8Be∗ → 4He +4 He 3.30 MeV 10−16 s

26.72 MeV
†Includes 1.02 MeV from e+ + e− → 2γ

Neutrino losses here are 7.2 MeV on average, predominantly through step (5c).5

In the Sun, ∼91% of reactions go through (3a); ∼9% end at (5b); and ∼0.1% end at (6c).

G.5 Hydrogen burning – II: the CNO cycle

Because the first reaction in the PP chain is so slow (7.9 × 109 yr), under certain circumstances it is
possible for reactions involving (much less abundant) heavier nuclei, acting as catalysts, to proceed
faster than PP. The larger charges (and masses) of these heavier particles imply that higher temperatures

5It is the high-energy neutrinos from this reaction that were famously search for by experimentalist Raymond Davis and
his partner theoretician John Bahcall; the failure to detect them in th expected numbers became known as the ‘Solar Neutrino
Problem’. The ‘problem’ is now resolved through better understanding of neutrino physics – the electron neutrinos (the only
type of neutrino detectable in tyhe 1960s, ’70s, and ’80s) ‘oscillate’ to other neutrino flavours.
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are required. Of these processes, the CNO, or CNO-I, cycle6 is the most important:

Step Process Energy Solar
Release Timescale

(1) 12
6 C +p → 13

7 N 1.94 MeV 1.3 × 107 yr

(2) 13
7 N → 13

6 C + e+ + νe 2.22 MeV † 7 m
(3) 13

6 C +p → 14
7 N 7.55 MeV 2.7 × 106 yr

(4) 14
7 N +p → 15

8 O 7.29 MeV 3.2 × 108 yr

(5) 15
8 O → 15

7 N + e+ + νe 2.76 MeV † 82 s

(6a) 15
7 N +p → 12

6 C +4He 4.96 MeV 1.1 × 105 yr

26.72 MeV
†Includes 1.02 MeV from e+ + e− → 2γ

As in PP, we have created one 4He from four protons, with release of some 26.7 MeV in the process; the
neutrinos carry off 1.71 MeV for every α particle created, so 25 MeV is available to heat the gas.
Although steps (2) and (5) both involve the weak interaction, they proceed faster than reaction (1) of the
PP chain, since the nucleons involved are already bound to each other (which allows more time for the
weak interaction to occur).

The cycle starts and finishes with 12C, which acts as a catalyst.7 However, during CNO cycling, the
overall abundances nonetheless change – why is this?

Step (4), 14N + p, is more than 10× slower than the next-slowest reaction (step (1), 12C + p). It therefore
acts as a ‘bottleneck’, with a build-up of 14N at the expense of 12C until the reaction rates8 of steps (1)
and (4) are equal (these depending on the number densities of reagents; eqtn. (G.2)). The equilibrium
condition that reaction rates are equal determines the abundances, which can be compared to ‘solar’
abundances:

CN cycle Solar
n(12C)/n(13C) 4 89
n(14N)/n(15N) 2800 250 [15N reduced by step (6a)]
n(14N +15 N)/n(12C +13 C) 21 0.3 [14N increased by step (3)]

at T ∼ 1.3 × 107K (the solar-core temperature; the timescale required to establish equilibrium is set by

6Sometimes called the ‘carbon cycle’, although this risks confusion with cycling of carbon between the Earth’s atmosphere,
biosphere, hydrosphere, which also goes by that name. The CNO-I and CNO-II cycles together constitute the ‘CNO bi-cycle’
Where do the CNO nuclei come from? The answer is that they were created in previous generations of stars, in processes
shortly to be described.

7Note that given ordering is arbitrary – the cycle can be considered as beginning at any point [e.g., starting at step (4),
ending at (3)].

8Recall that reaction rates depend on both timescales and reagent abundances – cf. eqtnG.1

223



the slowest reaction, and so is ∼ 108 yr at this temperature). These anomalous abundance patterns are a
clear signature of CN processing if the products are brought to the stellar surface.

We can similarly evaluate equilibrium abundances for PP processing; for T ' 1.3 × 107 K,

n(2D)/n(1H) = 3 × 10−17

n(3He)/n(1H) = 10−4

( = 10−2 at 8 × 106K)

G.5.1 CNO-II

There are a number of subsidiary reactions to the main CNO cycle, particularly involving oxygen. The
CNO-II bi-cycle accounts for about 1 in 2500 4He productions in the Sun:

(6b) 15N + p → 16O 12.13 MeV

(7b) 16O + p → 17F 0.60 MeV

(8b) 17F → 17O + e+ + νe 2.76 MeV

(9b) 17O + p → 14N +4 He 1.19 MeV

26.72 MeV

which returns to step (4) in CNO-I
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Figure G.3: Energy generation rates: CNO vs. PP processing

CNO-III, IV
The ‘OF cycle’ (which with CNO-I and CNO-II makes up the ‘CNO tri-cycle’) occurs in massive stars, and can
be divided into CNO-III and CNO-IV; each branch starts from a 17O produced in CNO-II:

(9c) 17O + p → 18F + γ+ 5.61 MeV

(10c) 18F → 18O + e+ + νe + γ 1.66 MeV

(11c) 18O + p → 15N +4 He

which returns to step (6b) in CNO-II; or, proceeding to CNO-IV:

(11d) 18O + p → 19F + γ 7.99 MeV

(12d) 19F + p → 16O +4 He 8.11 MeV

which returns to step (7b) in CNO-II

The only possible breakout from a closed cycle at temperatures relevant for quiescent hydrogen burning would
be an alternative to step (12d),

(12e) 19F + p → 20Ne + γ

but the rate is negligibly small, ensuring that the CNO cycles are completely closed.
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We have seen that

ε ' ε0ρTα (G.9)

where α ' 4.5 for proton-proton reactions in the Sun and α ' 18 for CN processing. Because core
temperature scales with mass (Section 11.5.3), PP dominates for lower-mass stars, while CN cycling
dominates for higher-mass stars. The Sun lies just below the crossover point (fig. G.3), and although the
PP chain dominates, the CN cycle is not negligible.

G.6 Helium burning

G.6.1 3α burning

Hydrogen burning dominates the stellar lifetime (the main-sequence phase), but the core pressure,

P =
ρkT
µm(H)

,

reduces as the mean molecular weight µ changes from 0.5 (for fully-ionized pure hydrogen) to 4/3 (for
fully-ionized pure helium). As a consequence the core contracts, and heats. If the star is more massive
than about 0.5M� the resulting core temperature and pressure are high enough to ignite helium burning
(∼ 108K, 108 kg m−3; lower-mass stars don’t have enough gravitational potential energy); the reactions
have a nett effect of

3 ×4 He → 12C

However, the process is hindered by the absence of stable mass-5 (4He + p) and mass-8 (4He +4 He)
nuclei; in particular, 8Be is unstable, and decays back to a pair of alpha particles in only about
∼ 3×10−16 s. Nonetheless, in equilibrium a small population of 8Be particles exists (at a level of 1 for
every ∼ 109 α particles) and these can interact with 4He under stellar-core conditions. Exceptionally
therefore, because the lifetimes are so short, the production of 12C is, essentially, a 3-body process, with
an energy-generation rate:

ε3α ' ε0ρ
2T 30

(where ε0 ∝ n(4He) and the density-squared dependence is because of the three-body nature of the
reaction).

(1) 4He +4 He ↔ 8Be −0.095 MeV

(2) 4He +8 Be ↔ 12C∗,
12C∗ → 12C + (2γ or e+ + e−) 7.37 MeV
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The first stage is endothermic; 8Be is more massive than two 4He nuclei, so the relative binding energy
is negative.

Reaction (2) is favoured by the existence of a resonance at 287 keV, which results in a 12C nucleus
excited 7.65 MeV above the ground state.9 The lifetime of this excited state is very small (about
5 × 10−17 s!), and normally decays straight back to 4He +8 Be, but 1 in ∼2400 decays is to a
ground-state 12C nucleus, with the emission of two photons. These decays are irreversible, and so a
population of 12C nuclei slowly builds up.

G.6.2 Further helium-burning stages

Once carbon has been created, still heavier nuclei can be built up:

12C +4 He → 16O 7.16 MeV
16O +4 He → 20Ne 4.73 MeV

These processes therefore generate C, O, and Ne. 12C and 16O are the most abundant nuclei at the end
of He burning (and the most cosmically abundant elements after H and He, with about 1 C or O for
every 103 hydrogens, or every 100 heliums) The situation is more complicated for 14N, which is
enhanced during CNO processing10 but which is is destroyed during He burning by the reactions

14N +4 He → 18O + e+ + νe
18O +4 He → 22Ne 4.73 MeV

G.7 Advanced burning

G.7.1 Carbon burning

After exhaustion of 4He, the core of a high-mass star contracts further, and at T ∼ 108–109K carbon
burning can take place:

12C +12 C →


23Na + p 2.2 MeV
20Ne +4 He 4.6 MeV
23Mg + n −2.6 MeV
24Mg + γ 13.9 MeV

9Hoyle (1954) deduced that such a resonance in a previously unknown excited state of carbon must exist to allow an α
particle to combine with an 8Be with sufficient probability for the triple-alpha process to proceed.

10All the initial 12C and 16O ends up as 14N.

227



with a temperature dependence of

εC ' ε0ρT 32

G.7.2 Neon burning

Neon burning takes place after carbon burning if the core temperature reaches ∼ 109K, but at these
temperatures photodisintegration also occurs:

γ +20 Ne → 16O +4 He

These ‘new’ alpha particles can then react with undissociated neons:

20Ne +4 He → 24Mg + γ

G.7.3 Oxygen burning

After neon burning the core consists mainly of 16O and 24Mg. Oxygen burning occurs at ∼ 2 × 109K:

16O +16 O →



32S + γ 16.5 MeV
31P + p 7.6 MeV
31S + n 1.4 MeV
28Si +4 He 9.6 MeV
24Mg + 2 4He −0.4 MeV

with silicon being the most important product.

G.7.4 Silicon burning

At ∼ 3 × 109K, silicon burning can occur; the Si is slowly photodisintegrated, releasing protons,
neutrons, and alpha particles (a process sometimes called ‘silicon melting’ as opposed to ‘silicon
burning’). Of particular interest is the reaction

γ +28 Si → 24Mg +4 He
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These alpha particles then combine with undissociated nuclei to build more massive nuclei; for
example, by way of illustration,

28Si +4 He ↔ 32S + γ

32S +4 He ↔ 36Ar + γ

36Ar +4 He ↔ 40Ca + γ

· · ·

52Fe +4 He ↔ 56Ni + γ

(→ 56Fe)

The overall timescale is set by the slowest step, which is the initial photodisintegration of Si.

G.7.5 The α process

Throughout the preceding advanced processing stages, a recurrent mechanism is the
capture of α particles (ie., helium nuclei) to form heavier elements. This ‘α process’
produces α-process elements whose most abundant isotopes have atomic masses that are
integer multiples of four; the generally accepted list of α-process elements is:
16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 48Ti
(44Sc is unstable; some authors consider C and N, produced by α capture, as α-process
elements).

Because the binding energy per nucleon peaks around mass A = 56 (the ‘iron-peak’ elements V, Cr, Mn,
Fe, Co, Ni) energy is absorbed to form heavier nuclei. Elements beyond the iron peak are therefore not
formed during silicon burning.

G.8 Pre-main-sequence burning

Although not as important as energy-generating sources, some reactions involving light nuclei can
occur at ∼ 106K – i.e., lower temperatures than those discussed so far:

2D + p → 3He + γ 5.4 × 105K (step 2 of PP-I)

6Li + p → 3He +4 He 2.0 × 106K
7Li + p → 4He +4 He 2.4 × 106K

9Be +2 D → 4He +4 He +3 He 3.2 × 106K
10B +2 D → 4He +4 He +4 He 4.7 × 106K
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These reactions generally destroy light elements such as lithium (produced, e.g., primordially) at
relatively low temperatures.

Note that the first step, burning of pre-existing deuterium, defines brown dwarfs – objects with cores too
cool to produce deuterium by proton-proton reactions.

G.9 Synthesis of heavy elements

G.9.1 Neutron capture: r and s processes

Carbon burning, oxygen burning etc. can generate heavy elements in the cores of very massive stars, but
only as far as the iron peak. However, a quite different set of reactions can occur at lower temperatures
(∼ 108 K, comparable to that need for 3α burning).

Since neutrons are electrically neutral, they see no Coulomb barrier, and can be absorbed into nuclei
even at quite low energies (in fact, heavy nuclei have relatively large neutron-capture cross-sections).
Neutron absorption produces a heavier isotope (increases A but not Z); a change in element may then
result if the nucleus is unstable to β decay (n→ p + e− + νe).

Following the pioneering work of Burbidge, Burbidge, Fowler & Hoyle (Rev. Mod. Phys., 29, 547,
1955), it is conventional to distinguish between r and s processes, depending on whether neutron
capture is rapid or slow compared to the β-decay timescale. If it is rapid, then more and more massive
isotopes accumulate; if it is slow, then decay to a higher-Z element takes place. Suppose we start off

with a neutron capture to produce some new isotope:

(Z, A − 1) + n→ (Z, A).
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Then if neutron capture happens slowly compared to decay for this new isotope, β decay precedes any
further neutron capture, and a new element is formed:

(Z, A)→ (Z + 1, A) + e− + νe.

However, if neutron capture is rapid then a further isotope is produced,

(Z, A) + n→ (Z, A + 1),

which will in turn β-decay,

(Z, A + 1)→ (Z + 1, A + 1) + e− + νe,

or assimilate a further neutron.

The timescales involved for the r and s processes are largely set by the relevant nuclear timescales.11

The s process occurs during non-catastrophic evolutionary phases (principally the AGB phase); we
know this from the observation that technetium occurs in S-type stars (moderately carbon rich M stars).
Even the longest-lived technetium isotope, 99Tc, has a half-life only of order 104 yr, and so it must be
produced within stars during normal evolutionary processes.

Where do the free neutrons come from? For the s process, the CNO cycle establishes an appreciable
abundance of 13C (step 2 in the sequence set out in Section G.5), which can react with 4He:

13C +4 He → 16O + n (−0.91 MeV)

This is the main source of neutrons in AGB stars; at higher temperatures,

22Ne +4 He → 25Mg + n (−0.48 MeV).

is significant.

Neutron-capture cross-sections are exceptionally small for certain nuclear neutron numbers. Because
it’s harder for the corresponding isotopes to increase in mass through neutron capture, they build up in
abundance. We see this effect as peaks in the element-abundance distribution for elements such as 88

38Sr,
138
56 Ba, and 208

82 Pb.

Elements beyond bismuth (Z = 83) cannot be produced through the s process, the terminating cycle

11Just to have some sense of the numbers, the s process typically operates on timescales of ∼ 104 yr at neutron densities of
∼ 1011 m−3; corresponding numbers for the r process are a few seconds at ∼ 1025 m−3.
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Figure G.4: Isotopes of gold–bismuth. The top row lists the number of neutrons in the isotope, while the atomic number

(number of protons) is given by the element name. Unstable isotopes decay by conversion of a proton to a neutron (electron

capture, ε), conversion of a neutron to a proton (β decay), or emission of a helium nucleus (α decay, Bi211 only). Numbers give

natural percentage abundances of stable isotopes (blanks are for isotopes that do not occur in nature).

The dashed line shows the s-process path from the only stable isotope of gold (Au197) to the only stable isotope of bismuth

(Bi209). Hg204 is an example of an isotope that can be made only by the r process.

being

209Bi + n→210 Bi
210Bi→210 Po(+e− + νe)
210Po→206 Pb +4 He

206Pb + 3n→209 Pb
209Pb→209 Bi(+e− + νe)

(involving Z = 84 polonium and Z = 82 lead in addition to bismuth).

Many, but not all, elements at lower atomic masses can be produced by both r and s processes; s-only
products include 87

38Sr and 187
76 Os.

The r process requires very high neutron fluxes, so that neutron capture rates exceed or compete with
β-decay rates. These conditions can only occur during catastrophic, short-timescale phases – supernova
explosions. Although some isotopes can be produced by both processes, in general there are significant
differences between their products.

G.9.2 The p process (for reference only)

In their seminal paper, Burbidge, Burbidge, Fowler & Hoyle (B2FH) identified the need for a process to
create certain relatively proton-rich nuclei, heavier than iron, that cannot be produced by either of the r
or s processes (e.g., 190Pt, 168Yb).

They originally envisaged a proton-capture process, but we now believe that these proton-rich nuclei are
not produced by addition of protons, but by removal of neutrons by photodisintegration (i.e., impact by
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high-energy photons).12 This occurs through neutron photodisintegration (ejection of a neutron) or
α photodisintegration (emission of an α particle). These processes require high temperatures (i.e.,
high-energy photons), and is believed to occur during core collapse of supernovae.

G.10 Summary

Hydrogen and helium were produced primordially. After these, CNO are the most abundant elements,
with CO produced through helium burning,13 with nitrogen generated in CNO processing.

Stars more massive than ∼ 8M� go on to produce elements such as neon, sodium, and magnesium, with
stars more massive than ∼ 11M� proceding to silicon burning, thereby generating nuclei all the way up
to the iron peak.

Subsequent processing primarily involves neutron capture (although other processes, such as spallation
and proton capture, have a small role).

The timescales for various burning stages are progressively shorter, as energy production rates increase
to compensate increasing energy losses (e.g., by increasing neutrino losses). Only massive stars have
enough gravitational potential energy to power the most advanced burning stages, so we review the
timescales for a 25-M� star:

Burning stage Timescale Tc/109K ρc (kg m−3) Products
H 7 × 106 yr 0.06 5 × 104 He; N (CNO process)
He 5 × 105 yr 0.1 7 × 105 C, O
C 6 × 102 yr 0.6 2 × 108 Ne, Na, Mg, etc.
Ne 1 × 100 yr 1 4 × 109 O, Na, Mg, etc.
O 5 × 10−1 yr 2 1 × 1010 Si, S, P, etc.
Si 1 d 3 3 × 1010 Mn, Cr, Fe, Co, Ni etc.

12Luckily, ‘photodisintegration’ fits the description ‘p process’ as well as ‘proton capture’ does! There is a proton-capture
mechanism, now called the rp process, but it is generally less important than the p process.

13The balance between C and O is determined by the balance between the rate of production of C and the rate of destruction
(in O formation). If the ratio favoured O only a little more, then we wouldn’t be here.
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Appendix H

Composition: abundances in astrophysics

Astronomers routinely use a number of different terminologies to describe abundances in stars
(galaxies, interstellar medium. . .). Because densities vary over an enormous range in astrophysical
environments, abundances aren’t always best characterized in absolute terms (e.g., numbers of atoms
per unit volume); instead, standard nomenclatures utilise relative abundances.

• Mass fractions:

X = mass fraction of hydrogen

Y = mass fraction of helium

Z = mass fraction of metals.

Here ‘metals’ are all elements heavier than helium, grouped together. Solar photospheric values
given by Asplund et al. (ARA&A 47, 481, 2009) are

X� = 0.7381

Y� = 0.2485

Z� = 0.0134

• Finer descriptions of individual element abundances are usually based on relative abundances by
number of nuclei. This may be done by reference to total numbers of atoms; e.g.,

x = n(H)/[n(H) + n(He) + n(metals)],

y = n(He)/[n(H) + n(He) + n(metals)],

z = n(metals)/[n(H) + n(He) + n(metals)]
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or relative to the most abundant element. Because hydrogen is normally the most abundant
element by orders of magnitude, it’s convenient to put the relative abundance on a log10 scale.
One might reasonably suppose that the obvious figures to employ would then simply be, e.g.,
log[n(X)/n(H)] for element X, and indeed this is often done; but more usually a rescaling by
12 dex is used, with results denoted either by square brackets, or sometimes by ‘ε’. That is,

[X] ≡ log ε(X) = log[n(X)/n(H)] + 12

which ensures that the numerical results are almost always positive. For example, the solar
carbon abundance can be expressed as

[C] = log ε(C)� = 8.39

meaning there is one carbon nucleus for every ∼ 103.61 hydrogens.

• Finally, it’s often useful to express abundances relative to solar values, in order to have an
immediate impression of how ‘normal’ the results are. This is again done on a relative
logarithmic scale, and the differential aspect denoted by the use of square brackets; so for two
elements A, B we have

[A/B] ≡ log
[
n(A)
n(B)

]
− log

[
n(A)
n(B)

]
�

For example, a star with an iron abundance with respect to hydrogen that is one-tenth that of the
Sun would have [Fe/H] = −1.0. One minor disadvantage of this approach for precise work is that
if the accepted value of the solar abundance changes for some element, any other published
values that use the original solar values require adjustment (unless originally determined
differentially with respect to the Sun).

This nomenclature is commonly used for global scaling of metal abundances, such that (e.g.)
[M/H] = +1.0 would mean all metals enhanced by a factor 10 over solar; in practice iron is often
used as a surrogate for ‘all metals’, in which case the same result may be expressed as
[Fe/H] = +1.0.
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‘Cosmic’ Abundances by number (Asplund et al., 2005ASPC..336...25A)
Elem. Photosphere Meteorites Elem. Photosphere Meteorites
H ≡ 12.00 8.25 ± 0.05 Ru 1.84 ± 0.07 1.77 ± 0.08
He [10.93 ± 0.01] 1.29 Rh 1.12 ± 0.12 1.07 ± 0.02
Li 1.05 ± 0.10 3.25 ± 0.06 Pd 1.69 ± 0.04 1.67 ± 0.02
Be 1.38 ± 0.09 1.38 ± 0.08 Ag 0.94 ± 0.24 1.20 ± 0.06
B 2.70 ± 0.20 2.75 ± 0.04 Cd 1.77 ± 0.11 1.71 ± 0.03
C 8.39 ± 0.05 7.40 ± 0.06 In 1.60 ± 0.20 0.80 ± 0.03
N 7.78 ± 0.06 6.25 ± 0.07 Sn 2.00 ± 0.30 2.08 ± 0.04
O 8.66 ± 0.05 8.39 ± 0.02 Sb 1.00 ± 0.30 1.03 ± 0.07
F 4.56 ± 0.30 4.43 ± 0.06 Te 2.19 ± 0.04
Ne [7.84 ± 0.06] −1.06 I 1.51 ± 0.12
Na 6.17 ± 0.04 6.27 ± 0.03 Xe [2.27 ± 0.02] −1.97
Mg 7.53 ± 0.09 7.53 ± 0.03 Cs 1.07 ± 0.03
Al 6.37 ± 0.06 6.43 ± 0.02 Ba 2.17 ± 0.07 2.16 ± 0.03
Si 7.51 ± 0.04 7.51 ± 0.02 La 1.13 ± 0.05 1.15 ± 0.06
P 5.36 ± 0.04 5.40 ± 0.04 Ce 1.58 ± 0.09 1.58 ± 0.02
S 7.14 ± 0.05 7.16 ± 0.04 Pr 0.71 ± 0.08 0.75 ± 0.03
Cl 5.50 ± 0.30 5.23 ± 0.06 Nd 1.45 ± 0.05 1.43 ± 0.03
Ar [6.18 ± 0.08] −0.45 Sm 1.01 ± 0.06 0.92 ± 0.04
K 5.08 ± 0.07 5.06 ± 0.05 Eu 0.52 ± 0.06 0.49 ± 0.04
Ca 6.31 ± 0.04 6.29 ± 0.03 Gd 1.12 ± 0.04 1.03 ± 0.02
Sc 3.05 ± 0.08 3.04 ± 0.04 Tb 0.28 ± 0.30 0.28 ± 0.03
Ti 4.90 ± 0.06 4.89 ± 0.03 Dy 1.14 ± 0.08 1.10 ± 0.04
V 4.00 ± 0.02 3.97 ± 0.03 Ho 0.51 ± 0.10 0.46 ± 0.02
Cr 5.64 ± 0.10 5.63 ± 0.05 Er 0.93 ± 0.06 0.92 ± 0.03
Mn 5.39 ± 0.03 5.47 ± 0.03 Tm 0.00 ± 0.15 0.08 ± 0.06
Fe 7.45 ± 0.05 7.45 ± 0.03 Yb 1.08 ± 0.15 0.91 ± 0.03
Co 4.92 ± 0.08 4.86 ± 0.03 Lu 0.06 ± 0.10 0.06 ± 0.06
Ni 6.23 ± 0.04 6.19 ± 0.03 Hf 0.88 ± 0.08 0.74 ± 0.04
Cu 4.21 ± 0.04 4.23 ± 0.06 Ta −0.17 ± 0.03
Zn 4.60 ± 0.03 4.61 ± 0.04 W 1.11 ± 0.15 0.62 ± 0.03
Ga 2.88 ± 0.10 3.07 ± 0.06 Re 0.23 ± 0.04
Ge 3.58 ± 0.05 3.59 ± 0.05 Os 1.45 ± 0.10 1.34 ± 0.03
As 2.29 ± 0.05 Ir 1.38 ± 0.05 1.32 ± 0.03
Se 3.33 ± 0.04 Pt 1.64 ± 0.03
Br 2.56 ± 0.09 Au 1.01 ± 0.15 0.80 ± 0.06
Kr [3.28 ± 0.08] −2.27 Hg 1.13 ± 0.18
Rb 2.60 ± 0.15 2.33 ± 0.06 Tl 0.90 ± 0.20 0.78 ± 0.04
Sr 2.92 ± 0.05 2.88 ± 0.04 Pb 2.00 ± 0.06 2.02 ± 0.04
Y 2.21 ± 0.02 2.17 ± 0.04 Bi 0.65 ± 0.03
Zr 2.59 ± 0.04 2.57 ± 0.02 Th 0.06 ± 0.04
Nb 1.42 ± 0.06 1.39 ± 0.03 U < −0.47 −0.52 ± 0.04
Mo 1.92 ± 0.05 1.96 ± 0.04
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Appendix I

Abbreviations

ABBREVIATIONS:
IR infra-red
ISM InterStellar Medium
UV ultraviolet

c Speed of light (in vacuo)
D Depletion factor ??
e Electron charge
f Filling factor ??

Oscillator strength
h Planck’s constant
k Boltzmann’s constant
me Electron mass
W Work function ??
γ classical damping constant ??
ν Photon frequency
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Appendix J

Einstein (radiative) coefficients

Einstein (1916) proposed that there are three purely radiative processes which may be involved in the
formation of a spectral line: induced emission, induced absorption, and spontaneous emission, each
characterized by a coefficient reflecting the probability of a particular process.

[1] A ji (s−1) – the Einstein coefficient, or transition probability, for spontaneous decay from an upper
state j to a lower state i, with the emission of a photon (radiative decay). The probability that the
emission will occur in time dt and in solid angle dω is A jidtdω, and the average time taken for an
electron in state j to spontaneously decay to state i is 1/A ji.

If n j is the number density of atoms in state j then the change in the number density of atoms in
that state per unit time due to spontaneous emission will be

dn j

dt
= −

∑
i< j

A jin j

while level i is populated according to

dni

dt
= +

∑
j>i

A jin j .

The contribution to the volume emissivity of spontaneous emission is just

jν = n jA jihν .

[2] B ji (s−1 J−1 m2 sr): the Einstein coefficient for radiatively induced de-excitation from an upper
state to a lower state (stimulated emission).

dn j

dt
= −

∑
i< j

B jin jIν,

dni

dt
= +

∑
j>i

B jin jIν
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[3] Bi j (s−1 J−1 m2 sr): the Einstein coefficient for radiative excitation from a lower state i to an upper
state j, with the absorption of a photon.

dni

dt
= −

∑
j>i

Bi jniIν,

dn j

dt
= +

∑
i< j

Bi jniIν

where Iν is the specific intensity at the frequency ν corresponding to Ei j, the energy difference between
excitation states.

The volume opacity arising from this bound–bound transition is

kν = niBi jhν − n jB jihν

For reference, we state, without proof, the relationships between these coefficients:

A ji =
2hν3

c2 B ji;

Bi jgi = B jig j

where gi is the statistical weight of level i.

In astronomy, it is common to work not with the Einstein A coefficient, but with the absorption
oscillator strength fi j, where

A ji =
8π2e2ν2

mec3

gi

g j
fi j

and fi j is related to the absorption cross-section by

ai j ≡

∫
aν dν =

πe2

mec
fi j.

Because of the relationships between the Einstein coefficients, we also have

Bi j =
4π2e2

mehνc
fi j,

B ji =
4π2e2

mehνc
gi

g j
fi j

J.0.1 Collisional coefficients

For collisional processes we have analogous coefficients:
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[4] C ji (m3 s−1): the coefficient for collisional de-excitation from an upper state to a lower state.

dn j

dt
= −

∑
j>i

C jin jne,

dni

dt
= +

∑
i< j

C jin jne

(for excitation by electron collisions)

[5] Ci j (m3 s−1): the coefficient for collisional excitation from a lower state to an upper state.

dni

dt
= −

∑
j>i

Ci jnine,

dn j

dt
= +

∑
i< j

Ci jnine

These coefficients are related through

Ci j

C ji
=

g j

gi
exp

{
−

hν
kTex

}
for excitation temperature Tex.

The rate coefficient has a Boltzmann-like dependence on the kinetic temperature

Ci j(Tk) =

(
2π
Tk

)1/2 h2

4π2m3/2
e

Ω(i j)
gi

exp
{
−∆Ei j

kTk

}
∝

1
√

Te
exp

{
−∆Ei j

kTk

}
[m3 s−1] (J.1)

where Ω(1, 2) is the so-called ‘collision strength’.

J.0.2 Statistical Equilibrium

Overall, for any ensemble of atoms in equilibrium, the number of de-excitations from any given
excitation state must equal the number of excitations into that state – the principle of statistical
equilibrium. That is,∑

j>i

Bi jniIν +
∑
j,i

Ci jnine =
∑
j>i

A jin j +
∑
j>i

B jin jIν +
∑
j,i

C jin jne (J.2)

The solution of this equation is at the heart of the calculation of theoretical spectra for stellar
atmospheres (and other applications). Although superficially innocuous, it is salutory to realise that the
summations may be over hundreds or thousands of energy levels, with the complication that the
photorates depend on the specific intensity – which depends on the statistical equlibrium (and not the
statistical equilibrium of a single ionic species, but of all species simultaneously).
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J.0.3 Detailed Balance
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Appendix K

Atomic spectra

K.1 Notation

For any given atom (or ion) there exist a number of discrete energy levels, corresponding to bound
orbits in the Bohr atom. From the innermost orbits outwards, each orbit is usually occupied by the
maximum number of electrons allowed. Electrons in the outermost occupied energy levels are those
that normally participate in transitions from one bound state to another (bound-bound transitions, giving
rise to absorption or emission lines). The same outermost, or valence, levels are usually involved when
an electron goes from a bound state to a free state (ionization), or from a free state to a bound state
(recombination).

In the Bohr model – the ‘old’ quantum mechanics – a bound electron could be described by just one
number, which in effect represented the orbital radius: the principal quantum number, n. The more
complete view of quantum mechanics developed by Schrödinger and others has electrons occupying
three-dimensional space, requiring three three quantum numbers (in effect, three co-ordinates), to
describe the orbitals in which electrons can be found. These are the principal, angular, and magnetic
quantum numbers, n, `, and m. These quantum numbers describe the size, shape, and spatial orientation
of the orbitals; a fourth quantum number, s, describes the electron spin.

Bound electrons are described by four quantum numbers:

1. XXXXXThe principal quantum number (n) describes the size of the orbital. Orbitals for which n
= 2 are larger than those for which n = 1, for example. Because they have opposite electrical
charges, electrons are attracted to the nucleus of the atom. Energy must therefore be absorbed to
excite an electron from an orbital in which the electron is close to the nucleus (n = 1) into an
orbital in which it is further from the nucleus (n = 2). The principal quantum number therefore
indirectly describes the energy of an orbital.
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2. XXXXThe angular quantum number (l) describes the shape of the orbital. Orbitals have shapes
that are best described as spherical (l = 0), polar (l = 1), or cloverleaf (l = 2). They can even take
on more complex shapes as the value of the angular quantum number becomes larger.

3. XXXa third quantum number, known as the magnetic quantum number (m), is needed to describe
the orientation in space of a particular orbital. (It is called the magnetic quantum number because
the effect of different orientations of orbitals was first observed in the presence of a magnetic
field.)

Orbitals that have the same value of the principal quantum number form a shell. Orbitals within a shell
are divided into subshells that have the same value of the angular quantum number. Chemists describe
the shell and subshell in which an orbital belongs with a two-character code such as 2p or 4f. The first
character indicates the shell (n = 2 or n = 4). The second character identifies the subshell. By
convention, the following lowercase letters are used to indicate different subshells.

s: l = 0 p: l = 1 d: l = 2 f: l = 3

Although there is no pattern in the first four letters (s, p, d, f), the letters progress alphabetically from
that point (g, h, and so on). Some of the allowed combinations of the n and l quantum numbers are
shown in the figure below.

The electron configuration of an atom describes the orbitals occupied by electrons on the atom. The
basis of this prediction is a rule known as the aufbau principle, which assumes that electrons are added
to an atom, one at a time, starting with the lowest energy orbital, until all of the electrons have been
placed in an appropriate orbital.

A hydrogen atom (Z = 1) has only one electron, which goes into the lowest energy orbital, the 1s
orbital. This is indicated by writing a superscript "1" after the symbol for the orbital.

H (Z = 1): 1s1

The next element has two electrons and the second electron fills the 1s orbital because there are only
two possible values for the spin quantum number used to distinguish between the electrons in an orbital.

He (Z = 2): 1s2

The third electron goes into the next orbital in the energy diagram, the 2s orbital.

Li (Z = 3): 1s2 2s1

The fourth electron fills this orbital.

Be (Z = 4): 1s2 2s2
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After the 1s and 2s orbitals have been filled, the next lowest energy orbitals are the three 2p orbitals.
The fifth electron therefore goes into one of these orbitals.

B (Z = 5): 1s2 2s2 2p1

When the time comes to add a sixth electron, the electron configuration is obvious.

C (Z = 6): 1s2 2s2 2p2

However, there are three orbitals in the 2p subshell. Does the second electron go into the same orbital as
the first, or does it go into one of the other orbitals in this subshell?

To answer this, we need to understand the concept of degenerate orbitals. By definition, orbitals are
degenerate when they have the same energy. The energy of an orbital depends on both its size and its
shape because the electron spends more of its time further from the nucleus of the atom as the orbital
becomes larger or the shape becomes more complex. In an isolated atom, however, the energy of an
orbital doesn’t depend on the direction in which it points in space. Orbitals that differ only in their
orientation in space, such as the 2px, 2py, and 2pz orbitals, are therefore degenerate.

In atoms with several electrons, each energy level is characterized by a total orbital angular momentum
number J (the vector sum of orbital and spin angular momenta for all electrons).

Each J level contains gJ separate states with the same energy (where the statistical weight gJ ' 2J + 1).

Several ‘fine structure levels’, with different J values and slightly different energies, constitute a
‘spectroscopic term’, designated S , P,D, F . . . (with corresponding total orbital angular momenta
L = 0, 1, 2, 3 . . .).

The number of different J levels is the multiplicity (= 2S + 1).
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Appendix L

Structure

Atomic structure is described by:

1. Configuration – the description of an atom (or ion) by quantum numbers of individual electrons
only. For example, the ground state of the sodium atom is described by

1s2 2s2 2p6 3s

The notation here, n`m, refers to the principal quantum number, n; the electron orbital angular
momentum, ` (` = 0, 1, 2, 3, 4, . . . ≡ s, p, d, f , g, . . .); and the number of electrons m in that
condition. Often the leading terms are omitted (as ‘obvious’). (Letters come from old sharp,
principal, diffuse, fundamental spectroscopic notation.)

2. Term – describes a pair of L, S values. In LS coupling, L is the vector sum of the orbital angular
momenta ` of individual electrons; S is the vector sum of the spins s of individual electrons. The
multiplicity of terms is normally given as = (2S + 1).

The total angular momentum, J, is the vector sum of L + S .

J = L + S , . . . , |L − S |

Fine structure transitions involve a change in J, i.e. a change in the electron spin-orbit interaction.

(Magnetic quantum numbers ML, MS , and M express the components of L, S , and J in the direction of
the magnetic field; but interstellar mag fields are generally weak, and Zeeman splitting undetectable.)

Nuclei with odd numbers of (neutrons plus protons) have a nuclear spin, I. For non-zero J there is
hyperfine structure, F :

F = I + J, . . . , |I − J|

Thus hyperfine transitions involve a change in F
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1. Example 1: The ground state of neutral H. The ground state of hydrogen is described by

1s 2S 1/2

This shows that there is one electron with s = 1. The multiplicity is 2, so the total vector sum of
(electron) spins is 1

2 (since mult. = 2S+1) - which is sensible! The orbital angular momentum L is
described by ‘S ′, i.e. L=0. The single nuclear proton has spin I = 1

2 so F = 1, 0. The energy
separation of the hyperfine levels is 21.1cm.

2. Example 2: The Na D lines. The ground state of neutral sodium is described by

1s22s22p63s 2S 1/2

The ‘D’ lines are the result of a change in L :

3p 2P1/2 → 3s 2S 1/2,

3p 2P3/2 → 3s 2S 1/2.

(Hyperfine splitting is also present within the D lines.)

3. Example 3: The ‘nebular’ lines of O2+. The ground state configuration is

1s22s22p2

The nebular lines arise from transitions between the three lowest terms (3P, 1D, and 1S ).

16O has I = 0 so there is no hyperfine structure.

L.1 Transitions

L.1.1 Electric dipole transitions.

So-called ‘allowed’ transitions give lines of appreciable strength, and correspond to electric dipole
transitions for classical oscillators. The selection rules for electric dipoole transitions are

∆` = ±1

∆S = 0

∆L = 0,±1 (L + L′ ≥ 1)

∆J = 0,±1 (J + J′ ≥ 1)

The Na D lines (for example) obey these rules; but the 21cm and nebular lines do not. They are
forbidden lines in terms of electric dipole transitions.
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L.1.2 Magnetic dipole transitions.

For magnetic dipole transitions (‘semi-forbidden’ lines)

∆` = 0

∆S = 0

∆L = 0

∆J = 0,±1 (J + J′ ≥ 1)

and also
∆F = 0,±1

Thus the 21cm line is allowed as a magnetic dipole transition. The oxygen lines are not.

L.1.3 Electric quadrupole transitions.

For electric quadrupole transitions (‘forbidden’ lines)

∆` = 0,±2

∆S = 0

∆L = 0,±1,±2 (L + L′ ≥ 2)

∆J = 0,±1,±2 (J + J′ ≥ 2)

The 1D2 →
1 S 0 transition is electric quadrupole. The 3P→1 D lines violate ∆S = 0; but that selection

rule is not rigorous (it holds strictly only in pure LS coupling, and not at all in j j coupling.)

L.2 Transition probabilities.

Transition probabilities are expressed using the Einstein A coefficient (the probability of spontaneous
emission). For optical lines, typically

Electric dipole A = 108s−1

Magnetic dipole 103

Electric quadrupole 100

Thus for the Na lines, A ∼ 108/s. For O2+

1D2 →
1 S 0 4363 1.6/s
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3P1 →
1 D2 4958 0.007

3P2 →
1 D2 5007 0.021

The 3P0 →
1 D2 has ∆J = 2 and has a much smaller probability (∼ 10−6)

What transition probability do we expect for 21cm? A figure ∼ 103 is given above for optical lines; but
(inter alia) A ∼ λ−3. Since 21cm = 2100 × 106Å, we expect

A ∼ 103/(106)3 ∼ 10−15/s

Accurate calculations give
A = 2.876 × 10−15/s

The lifetime in the upper state is therefore

1/A = 3.5 × 1014s ∼ 107yr

The (de-excitation) timescale in interstellar clouds is such that this spontaneous de-excitation can occur;
and the amount of hydrogen is enough to give a strong signal.

Once a ‘forbidden’-line photon is emitted the chance of being re-absorbed in the same transition is
small. Thus the nebular lines easily escape a nebula, and the 21cm lines can traverse large volumes of
cold H gas.
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Appendix M

Another go...

M.1 Quantum Numbers of Atomic States

• Principal quantum number n defines the energy level

• Azimuthal quantum number `

– states with ` = 0 are called s states

– states with ` = 1 are called p states

– states with ` = 2 are called d states

– states with ` = 3 are called f states

• ‘orbits’ of s states become more distorted as n increases

• Electron transitions take place between adjacent angular momentum states (i.e., ∆` = 1)

– ‘sharp series’ lines from p to higher s states

– ‘principal series’ lines from s to higher p states

– ‘diffuse series’ lines from p to higher d states

– ‘fundamental series’ lines from d to higher f states

• The first line(s) of the principal series (s to p) are called resonance lines since they involve the
ground level

• In alkali metals, the p, d, and f levels are doubled (e.g., the Na D lines) due to the coupling
between the magnetic moment of the orbital motion and the spin of the electron (the spin
quantum number s, which takes values +1/2 or −1/2).
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M.2 Spectroscopic Notation

• The total angular momentum quantum number is j = ` + S

– For s states, j = 1/2

– For p states, j = 1/2 or 3/2.

• Electron levels are designated by the notation ‘n2(L)J’

• n is the total quantum number

• The superscript 2 indicates the levels are doubled

• L is the azimuthal quantum number (S , P,D, F)

• J denotes the angular-momentum quantum number

• e.g., for sodium the ground level is 3s 2S 1/2

• The two lowest p levels are 3p 2P1/2 and 3p 2P3/2

• The Na D lines are described as

• 3s 2S 1/2–3p 2P3/2 λ5889.953 and 3s 2S 1/2–3p 2P1/2 λ5895.923Å

M.3 More Spectroscopic Vocabulary

• The Pauli exclusion principle requires that two s electrons in the same state must have opposite
spin

• Therefore S = 0, and these are called ‘singlet’ states

• The ground state of He is a singlet state, 1S 0

– The superscript 1 means singlet

– The subscript 0 means J = 0

• In the first excited state of He, one electron is in the 1s state, and the second can be in either the
2s or the 2p state.

• Depending on how the electron spins are aligned, these states can either be singlets or triplets

• Electrons can only jump between singlet states or between triplet states

• The state of the electrons is described with a ‘term’ for each electron above the closed shell.
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• For carbon atoms, ‘1s22s22p2’ means there are

– 2 electrons in the 1s state

– 2 electrons in the 2s state

– 2 electrons in the 2p state

M.4 Allowed and Forbidden Transitions

• Transitions with ∆` = 1 and ∆J = 1 and 0 are ‘allowed’ (except J = 0→ 0)

• Other transitions are ‘forbidden’

• For some electron states there are no allowed transitions to lower energy states. Such levels are
called ‘metastable’

• The situation is more complex in atoms with more electrons!

• A multiplet is the whole group of transitions between two states, say 3P–3D

M.5 Spectral Line Formation

M.5.1 Spectral Line Formation-Line Absorption Coefficient

• Radiation damping (atomic absorptions and emissions aren’t perfectly monochromatic –
uncertainty principle)

• Thermal broadening from random kinetic motion

• Collisional broadening – perturbations from neighbouring atoms/ions/electrons)

• Hyperfine structure

• Zeeman effect

M.6 Classical Picture of Radiation

• Photons are sinusoidal variations of electromagnetic fields

• When a photon passes by an electron in an atom, the changing fields cause the electron to oscillate

• We treat the electron as a classical harmonic oscillator:
mass × acceleration = external force − restoring force − dissipative
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M.7 Atomic Absorption Coefficient

• n0 is the number of bound electrons per unit volume

• the quantity ν − ν0 is the frequency separation from line centre

• ε is the dielectric constant (ε = 1 in free space)

• and γ = g/m is the classical damping constant

The atomic absorption coefficient includes atomic data ( f , ε, γ) and the state of the gas (n0), and is a
function of frequency. The equation expresses the natural broadening of a spectral line.

M.8 The Classical Damping Constant

• For a classical harmonic oscillator,

• The shape of the spectral line depends on the size of the classical damping constant

• For ν − ν0 >> γ/4π the line falls off as (ν − ν0)−2

• Accelerating electric charges radiate.

• The Na D lines have a wavelength of 590 nm, γ = 6.4 × 107 s−1

M.9 Line Absorption with QM

• Replace γ with Γ

• Broadening depends on lifetime of level

• Levels with long lifetimes are sharp

• Levels with short lifetimes are fuzzy

• QM damping constants for resonance lines may be close to the classical damping constant

• QM damping constants for other Fraunhofer lines may be 5,10, or even 50 times bigger than the
classical damping constant

256



Appendix N

Temperatures

Lots of possibilities, e.g.,

• Effective temperature, Teff .
The temperature of a blackbody which would produce the same amount of radiant energy per unit
area as the star (averaged over its surface if necessary).

• Colour temperature, Tcol.
Measure the colour, normally as the difference of magnitudes in two filters (i.e., the flux ratio
between two wavelengths). The colour temperature is the temperature of a blackbody which
would produce the flux ratio.

• Brightness temperature, Tb.
The temperature of a black body that would reproduce the observed surface brightness at some
specific wavelength (or passband).

• Radiation temperature, Trad.
In bolometric radiative equilibrium. In LTE frequency equlibrium

• Excitation temperature, Tex

The temperature for which the Boltzmann equation reproduces an observed ratio of two energy
levels in a given species.

• Ionization temperature, TI

The temperature for which the Saha equation reproduces an observed ratio of two ionization
stages for a given element.

• Kinetic temperature, Tk.
If (as is usually the case in stellar astrophysics) the velocities of particles in a gas follow a
Maxwellian distribution, the kinetic temperature is what characterizes the magnitude of the
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motions. In astrophysics, we can’t measure the velocity distribution directly, and so it is
customary to assume a Maxwell-Boltzmann distribution (unless there are reasons not to). A
typical application would then be to use this assumption in estimating the kinetic temperature of
electrons that is required to match the level populations for a collisionally excited emission line,
giving the

• Electron temperature, Te.
Other species-specific temperatures may be used as surrogates for the kinetic temperature; e.g.,
the ionic temperature, Tion (understood to reflect the motion of nuclei in a gas).

In thermodynamic equilibrium (TE) Tex = TI = Tk (and the same kinetic temperature holds for all types
of particle); we might collectively refer to all these descriptors as ‘the gas temperature’, Tgas. In this
case, it should be clear that the velocity distributions are Maxwellian, and the ionization and excitation
are described by Saha-Boltzmann. Moreover, in TE, Kirchhoff’s law

Real systems are very rarely in true thermal equlib

Jo:

LTE refers to the occupation numbers, i.e., Saha Boltzmann, and that the velocity distribution of ALL
particles follows a Maxwellian with the same temperature (i.e., Te = Tion)

THUS: ’true’ opacities and emissivities follow the Kirchhoff–Planck law, i.e.,
ηtrue = κtrue ∗ Bν → S true = Bν

But: there is (almost) always scattering, which also in LTE makes life complicated.

Thus S total = (κtrue ∗ S true + κscat ∗ J)/(κtrue + κscat)

(in the above line, it could be also some integrals over J or I, if one accounts for partial redistribution).

Moreover, J , B, because at the outer boundary (and such a thing is defined in LTE, though not in TE),
the photons can escape, and then J < B. Of course as well, I , B.

b) What you are after is thermalization. For large optical depths, J → B, and thus S total → B, since the
scattering part becomes thermalized.

In this case, J ' S ' B. But I is still angle dependent, because otherwise you would have no flux
(isotropic I gives flux = 0)

All this can be also described in terms of the diffusion approximation, where the same is valid.

Conclusion: In LTE, J ' S ' B, but I has an angle-dependent term, which can be approximated by
I ' B + µdB/dτ, BUT ONLY FOR LARGE OPTICAL DEPTH.
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In that part where the light is emitted, i.e., for optical depths below unity, one has only that S true = B,
and nothing else.

Webby stuff:

In astrophysics the distinction between ’thermal equilibrium’ and ’thermodynamic equilibrium’ is not
carefully made, because there is rarely if ever a situation in this context in which thermal equilibrium
might hold without thermodynamic equilibrium.

The most common situation in which the presence or absence of LTE is considered is for a star. There is
a flow of heat from the interior of a star to its atmosphere at large radii, and the temperature varies as a
function of radius. So clearly gas near the atmosphere is not in thermodynamic (or thermal) equilibrium
with gas in the core.

However, models of stellar interiors can be vastly simplified if one recognizes that there is still a local
thermodynamic (thermal) equilibrium in the sense that the kinetic distribution of the free electrons, the
plasma ionization state, and the radiation field at each radius can all be very well described by a single
number, a local temperature TT. The electron velocities obey a Maxwell-Boltzmann distribution, the
ionization state follows from the Saha equation, and the radiation field is described by a Planck function
(blackbody), all evaluated for some common TT.

As the link you provide explains, this works as long as the mean free path of any particles that might
transport heat (e.g. photons, electrons) is very small compared to the length scale over which the
temperature is changing. In the atmospheres of stars, where the photon mean free path grows large, LTE
in the above sense can break down. However, if the electron mean free path is still small enough, it can
helpful to apply an even more limited notion of LTE in which one takes the electron velocities to be in
LTE, while acknowledging that the radiation field may depart from a Planck function.

We can’t treat the entirety of a star as being in TE – obviously, the core is hotter than the photospheric
layers, and no one temperature describes the entire object. However, if conditions don’t change
‘significantly’ over some ‘small’ distance – where ‘significantly’ and ‘small’ will be discussed shortly –
then we can say that a system is in local thermodynamic equilibrium, or LTE.

Notice that here LTE is described entirely by the properties of the particles; radiation has not made an
appearance. But of course, radiation almost always has some role to play; the question is, how
important is that role?

For example: on a sunny day in temperate latitudes, the gas temperature...
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Index (experimental – work in progress!!)

K integral, 16

Eddington flux, 16
energy density (radiation), 17

flux (from a star), 14
flux, Eddington, 16
flux, physical, 11

intensity, 13
intensity, mean, 10, 16
intensity, specific, 9

Lane–Emden equation, 124

mean intensity, 10, 16

moments of the radiation field, 15

physical flux, 11

polytropes, 123

radiation pressure, 19

specific intensity, 9
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