PHAS3136: Cosmology and Extragalactic Astronomy

Part I: Galaxies

Our galaxy, populations. Spiral structure; rotation curves (21 cm); mass	
distribution (dark matter).	[4]
Morphology, luminosity function; Tully-Fisher & Faber-Jackson relations; m	lass-
to-light ratios; fundamental plane.	[1]
Galactic chemical evolution; the 'G-dwarf problem' and possible solutions	[2]
Measurements of the Hubble Constant	[1]
Clusters of galaxies. Morphology; mass indicators (Virial theorem, X-ray	
emission, gravitational lensing).	[3]

Part II: Active Galactic Nuclei

Taxonomy and principal observational characteristics; the central engir	ne (mass,
luminosity, nature).	[1]
The broad-line region; reverberation mapping. Broad and narrow absor	ption-line
systems in quasars; Mass estimates.	[2]
Gunn-Peterson test. Quasar luminosity function (survey techniques, se	lection
effects); the logN – log S and V/Vmax tests.	[1]

Part III: Cosmology

Introduction; the observational basis of cosmological models; a brief history of	of
the Universe, from t = $10-43$ s to the present.	[2]
The Friedmann equation; evolution of density and scale factor with time (the	fluid
equation and acceleration equation).	[3]
Derivation and meaning of the cosmological parameters.	
Specific models (Einstein-de Sitter, Milne, etc.)	[2]
Formation and evolution of the Cosmic Microwave Background (CMB);	
production of the light elements. Baryogenesis.	[4]
Problems with the traditional Big Bang model (flatness, horizon, monopoles,	
structure); inflation;	[1]
Large-scale structure and CMB power spectra.	[3]

Teaching method:

The course is based on 30 lectures plus 3 sessions which are used for reviewing homeworks and for supplementary material (summaries of important recent papers in the field, slides, etc.).

There are 4 problem sheets, which include both essay work and calculation of numerical results for different cosmological models.

The principal recommended book is:

An introduction to galaxies and cosmology (Jones & Lambourne, Cambridge) Additional recommended books are:

An Introduction to Modern Cosmology (Liddle, Wiley)

An Introduction to Active Galactic Nuclei (Peterson, CUP)

The course is assessed by written examination (90% of total course marks) and by problem sheets (10%).