1.4 Galaxy Light Distributions

List of topics

- Hubble classification scheme
 - see Binney & Merrifield text
- Galaxy surface brightness profiles (JL 2.3.1, plus additional material)
- Galaxy luminosity function (not in JL)
- The Tully Fisher relation (additional material cf JL)
- The Faber-Jackson relation (additional material cf JL)
- Metallicity and populations in typical spirals
- Metallicity and populations in typical ellipticals

See JL 2.2 for some background material only

Surface Brightness Profiles

What is the total luminosity of a galaxy?

Surface Brightness Profiles

- What is the total luminosity of a galaxy?
 - At what radius to stop adding up?
 - Atmosphere and instrument limit radius
- Surface brightness profile = apparent surface brightness as fn of radius
 - Apparent surface brightness = energy from source, per unit area of telescope, per arcsec²
 - Usually for a given waveband, e.g. R-band
- Usually assume
 - ellipticals: de Vaucouleurs profile: $I(R) \propto exp(-(r/r_0)^{1/4})$
 - spirals: de Vaucouleurs bulge + exponential disk exponential disk: $I(R) \propto exp(-r/r_0)$

The Galaxy Luminosity Function

- Number of galaxies of given L per unit V
- Schechter function fits well
 - $\phi(L) = (n_* / L_*) (L/L_*)^{\alpha} \exp(-L/L_*)$
 - Where α ~ -1.1, L_{*} ~10¹⁰L_{solar}, n_{*} ~ 0.01 Mpc⁻³ (depending on selection criteria of galaxies)

Sketch the Schechter function on a log-log plot

Local luminosity function

The 2dF galaxy survey (astro-ph/0111011)

Figure 9. Luminosity functions for different subsamples of the 2dFGRS data. The smooth curve in each panel is a Schechter function with $M_{b_{T}}^{\star} - 5\log_{10} h = -19.67$, $\alpha = -1.21$ and $\Phi^{\star} = 1.64 \times 10^{-2} h^{3} Mpc^{-3}$. This is the STY estimate for the sample defined by

The Galaxy Luminosity Function

- Number of galaxies of given L per unit V
- Schechter function fits well
 - $\phi(L) = (n_* / L_*) (L/L_*)^{\alpha} \exp(-L/L_*)$
 - Where α ~ -1.1, L* ~10^{10}L_{solar}, n* ~ 0.01 Mpc⁻³ (depending on selection criteria of galaxies)
- L_{*} is a typical galaxy luminosity
- n_{*} is a typical galaxy density

- what is a typical intergalactic distance? $n_*^{-1/3} = 5 \text{ Mpc}$

• $N = \int_{L(min)} \phi(L) dL$ diverges as $L(min) \rightarrow 0$

- not physical but emphasises large number of faint galaxies

Dependence of $\phi(L)$ on galaxy type

The Tully-Fisher relation

- Relates luminosity to line-width for spirals
- v(r) for our galaxy is typical of spirals
 Observe other galaxies using HI or HII

http://www.astro.livjm.ac.uk/courses/exams/phys134_0699.html

The Tully-Fisher relation

- Relates luminosity to line-width for spirals

 Tully & Fisher 1977
- v(r) shape for our galaxy is typical of spirals
 - Observe other galaxies using HI or HII call v_{rot} the flattened velocity
- We observe $L \propto v_{rot}^{\beta}$ - $\beta \sim 2.5$ in b-band
 - $-\beta \sim 4$ in the infrared
- What would you expect for β ?
 - Assume M ~ L (constant mass to light ratio)

– Assume L = $L_0 \pi r^2$ (with L_0 same for all gals)

What would you expect for β ? L $\propto v_{rot}^{-\beta}$

1. 1
 2. 2
 3. 2.5
 4. 4

Assume M \propto L (constant mass to light ratio) Assume L = L_o π r₀² (with L_o same for all gals)

local calibrators

Ursa major

Virgo

The Faber Jackson relation

- Relates luminosity and central velocity dispersion of ellipticals
- Stars in ellipticals seem to be virialised
 - all move in random directions, velocities v
 - velocity dispersion = $\sigma_v = \langle v^2 \rangle^{1/2}$
 - virial theorem: 2 K.E.=-P.E. so $\sigma_v^2 \propto M/R$
- Faber-Jackson relation: L $\propto \sigma_v^4$
- The Fundamental Plane:
 - plot galaxies in 3d: L, σ_v , R – find R $\propto \sigma_v^{-2} L^{1.25}$

Mass-to-light in ellipticals

- Virial theorem: $M \propto \sigma_v^2 R$
- The fundamental plane: R $\propto \sigma_v^{-2} L^{1.25}$
- Suppose (M/L) \propto L^{γ}
 - Find $\boldsymbol{\gamma}$
- The bigger the luminosity, the bigger the mass, the more dark matter

What type of stars do ellipticals mostly contain?

- 1. Pop I
- ★2. Pop II
 - 3. Pop III

Spiral galaxies

- See notes on our galaxy
- Blue spiral arms, young, high Z
- Older disk population, medium Z
- Old low mass Pop II stars in bulge and spheroid
- Decrease in Z with increasing r
 - e.g. bulge metallicity is higher than solar

Elliptical galaxies

- Little sign of gas or recent star formation
- Stellar populations are old and red (Pop II)

- (B-V ~ 1)

- most light from red giants
- Small E/S0 gals have low metal content

- Large E/S0 galaxies are relatively metal rich

Why does the gas have a larger scale height than the O and B

- 1. The gas has diffused since the O and B stars formed
- 2. Formation of O and B stars depends linearly on the gas density
- 3. Formation of O and B stars depends non-linearly on the gas density

Why do the G, K, and M stars have a larger scale height than the gas?

7

- 1. Formation of G, K and M stars depends non-linearly on the gas density
- 2. The G, K and M stars have drifted away from the disk since forming
 - 3. The gas has condensed towards the central plane since the stars formed

Read JL first paragraph on p 36

Are spiral arm stars

- 1. Very young (<0.1 Gyr)
 - 2. Young (0.1 1 Gyr)
 - 3. Intermediate age (1 10 Gyr)
 - 4. Old (10 14 Gyr)

Are spiral arm stars mostly

- 1. Low metallicity (Z<0.002)
- 2. Lower than solar metallicity (Z < 0.02)
- 3. Higher than solar metallicity (Z > 0.02)

Stellar populations in the disk

Why are spiral arm stars high metallicity?

- They are old and so have produced a lot of metals
- 2. They are high mass and so have produced a lot of metals
- 3. Gas they formed from was metal rich

Why is the gas the spiral arm stars formed from more metal rich than that which formed the other disk stars?

- The spiral arms are higher metalicity than the rest of the disk
- 2. Metals accumulate over time and the other disk stars were formed long ago

The Sagittarius dwarf galaxy Stuff is still falling into our Galaxy

http://www.sdss.jhu.edu/~wyse/

Galactic Archaeology

- Observe positions and velocities of all stars in our galaxy
- · Compare with simulations to constain models

http://astronomy.swin.edu.au/rave/RAVEfig3.jpg

Surface brightness prediction

http://www.physics.uci.edu/~bullock/StellarHalo/halo.html

http://www.astro.wesleyan.edu/~kvj/halo.html

Galactic Archaeology

- Observe positions and velocities of all stars in our galaxy
- Compare with simulations to constrain models
- Future experiments:
 - RAVE: just started, Australia
 - GAIA: satellite
 - WFMOS: proposed, UCL is involved