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The Cosmic Microwave Background

After these lectures, you should be able to:
Discuss the discovery of the CMB
Define “recombination”

Describe how the CMB arises and why it is a
plackbody

Redshifting of CMB photons

Estimate the redshift of recombination from
To=2.7K
ai\ﬁ%uss results on the frequency spectrum of the

Note that it is isotropic to 1 in 10°




Recombination
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Universe is hot (107°)

— Electrons are free b

— Light scatters off electrons

Recombination

Late times

Universe is cooler

— e- and p+ form hydrogen
— Light travels freely
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Nucleo- Last Galaxy
Synthesis Scattering Formation




We can only sea
the surface of the
PRESENT cloud where light

13.7 Billion Years was last scattered
after the Big Bang
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DiscovERY OF Cosmic BACKGROUND
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Interstellar Molecules

The first measurements of the CMB
— But no-one realised it at the time (cf “discovery” in 1965)

1940 McKellar measured CN lines
— CN was at a temperature of 2.7K
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Hoyle made the connection in 1950

— "[the Big Bang model] would lead to a temperature of
the radiation at present maintained throughout the whole
of space much greater than McKellar's determination for
some regions within the Galaxy."

Yet other calculations of the Big Bang (Alpher and Herman
1949) predicted T ~ 1K to 5K
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Evolution of a black-body spectrum
with time

pr oc @

pg o« T*  (from thermodynamics)
Must have T « 1/a

Revision: The Planck spectrum

— Energy per unit volume, from photons with frequencies
between v and v + dv

— Mean energy of a photon is ~ 3kgT

To retain black-body shape, need
— vo T
— A 1l/Tx<a
— Light effectively stretches with the Universe




Estimate z... from T,=2.73K

Z..c = redshift of recombination
Ionization energy of Hydrogen

— Energy required to split H -> p + e
- 1=13.6 eV

Simplest estimate:

— Mean energy of photons in Universe at given time is
3kg T

— Need 3 kg T~ I for ionization

— Gives T ~ 50,000K

But: ratio of no. photons to no. baryons ~10°

— Can have a cooler Universe ionizing baryons completely

Exact answer: T ~ 3000K see derivation in class
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The History of CMB observations




The WMAP Satellite

MAFS20388




aunch June 2001




What WMAP saw

Graphic from WMAP website



Zooming the colour scale by
factor of 1000

Graphic from WMAP website




Removing the effect of our motion
through the galaxy

Graphic from WMAP website




We have to look through our own
galaxy... How???




Can remove the foregrounds (i.e. the
galaxy) with frequency:
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After removing the contribution
from dust in our galaxy

e Uniform to 1 in 100,000

Graphics from WMAP website




CMB fluctuations

After these lectures, you should be able to:
Describe the acoustic oscillations in the photon-baryon
fluid
Explain the position of the first acoustic peak in the CMB
in terms of the Hubble length at recombination and the

geometry of the Universe

Sketch temperature fluctuation spectrum and comment
on the origin of the secondary peaks

Describe the latest observations of CMB anisotropy and
their implications for the geometry of the Universe
Describe the other anisotropies in the CMB. ISW, SZ,
Doppler, polarisation anisotropies.




WMAPS — How do we study this?




Why is it an ellipse?

Just a projection of the whole sky (Aitoff)




Statistical properties

i

Spherical harmonic transform

~Fourier transform

e(e+1)C,

€~ 180/6

10 10° 10°
Spherical harmonic number ell ~ 180/6

Large scales Small scales
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Statistical properties

i

Spherical harmonic transform

~Fourier transform

e(e+1)C,

€~ 180/6

10 10° 10°
Spherical harmonic number ell ~ 180/6

Large scales Small scales



After removing the contribution
from dust in our galaxy

e Uniform to 1 in 100,000

Graphics from WMAP website



3 regimes of CMB power spectrum

10’ 10° 10°
Spherical harmonic number ell ~ 180/6
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Understand main feature:
position of 1st peak

Bouncing fluid causes peak structure
Curvature of Universe -> peak locations

Photon-baryon fluid oscillates in dark matter potential wells
Large scales oscillate slowest

Acoustic Oscillations

\7 &)=

Graphic by Wayne Hu, http://background.uchicago.edu/~whu/beginners/introduction.html



An analogy

Drop bouncy balls from different heights and wait 10
seconds

Lower balls bounce more times
Highest balls don’t even reach the ground

There is one ball that just touches the ground in the time
available

Balls bouncing Photon-baryon fluid
oscillating
10 seconds

Bouncing Age of universe at

recombination
Original height of ball |
that only just reaches the Peaks in CMB plot

ground Position of first peak




The first acoustic peak

Consider scale which had time only to collapse under gravity
since big-bang

— it is at maximum T => hot-spot

Scale ~ Hubble length at z~1000

~ speed X age of universe at z~1000
= 3x108 m s'1 x 400,000 years
~4x 1021 m

~ 0.1 Mpc

= 100 comoving Mpc




Angular Diameter Distance

Effective distance such that

— 0=d/D,

— d = comoving size of object

— 0 = angular size of object

— D, = angular diameter distance
For a flat Universe

- D,=D/ (1+2)

— where D = integrated comoving distance as for D,
D, to zoyg IS ~ 14 Gpc
Therefore angular size

~ 100 / 1400 rad

~ 1 degree
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Graphic from WMAP website



Graphic from WMAP website
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Secondary peaks
Plotis ~ FT of (T(0) -
mean(T))

Second peak = collapse,
expand to max

Third peak = collapse,
expand, collapse

etc..

Expect peaks to be
equally spaced in |
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Graphic by Wayne Hu, http://background.uchicago.edu/~whu/beginners/introduction.html




Sachs-\Wolf effect and Doppler
perturbations

Matter is distributed in an anisotropic way.

Photons climbing out of potential wells loose energy

Photons emitted from regions of low density are blue shifted.
gravitational redshift contribute to the dT/T in the CMB sky.
Cold spots are over densities and hot spots are under densities.
Has a net effect over large scales.

Motion of the plasma has an influence on the frequency of the
photons. This is important on smaller scales. This is in anti-
phase with oscillations...




ISW is the gravitational redshift that photons coming from CMB undergo when they
fall in a deep potential and come out.
This change in potential can be created when the Universe is not matter dominated.




How to detect ISW?

Temperature fluctuations created by ISW are difficult to see in power
spectrum
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Alternative:
Cross correlating CMB temperature with potential traced by LSS

(Crittenden & Turok 1996)




CMB data LSS data

SDSS DR4

-Selection of subsamples with different redshift distribution
-10° — 107 galaxies
-high redshift Luminous Red Galaxy (Eisentein et al. 2001




The Silk Tail:
Dissipation / Diffusion Damping

Imperfections in the coupled fluid — mean free path A in
the baryons

Random walk over diffusion scale: geometric mean of mfp
& horizon

PR | TR N | ST,
1000 1500




Physics of the SZ Effect

Mechanism & Thermal Effect
CMB photons

T=(1+22725K ./’

Inten sty

5

Sunyaev & Spectral
Zeldovich (1970) shift




Physics of the SZ Effect

Functional Form (no need to remember formula)

y parameter

eTemperature shift proportional to the gas
pressure, 71,7, & mass |d/

*CMB photon energies boosted by ~k7./(m.c)
o kT, ~ 10keV, Te ~ 108 K

X = INv/KT,)

*f(x) is the spectral dependence




Physics of the SZ Effect

The Kinetic Effect: a Doppler boost from the peculiar velocity of the cluster

Kinetic SZE

Null' in thermal = ™.
- measure kinetic '

Kinetic effect is
small

~ Kinetic SZE

Thermal SZE
Thermal SZE - -08 } -

0 100 200 300 400 500 0 100 200 300 400 500
Frequency (GHz) Frequency (GHz)




10*

Physics of the
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Compton scattering of unpolarized
anisotropic radiation produces polarization

Require Quadrupole

Require Compton
scattering

Signals factor of 10
smaller than
temperature
anisotropies

Generated during 2
epochs: pre-
recombination
(z~1000) and after
reionization (z~10)




Polarization field
decomposed into E- and B- modes




2 ok

Map is 5 degrees square




Results
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Results

EE - only =2g detections plotted BB 55% confidence upper limits
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WMAP map of CMB Polarization




The near future
Full WMAP data release

— error bars shrink by
factor of ~2

— EE results
Higher resolution data from

ground based

— CBI, VSAE, VSASE,
ACBAR

Polarization experiments

— Boomerang, CBI, Pique
Clover, QUest

Planck, launch = 2009
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Quadrupoles from Gravitational
Waves

Transverse-traceless
distortion provides
temperature quadrupole
e GGravitational wave
polarization picks out
direction transverse to




Plans to Detect B-Modes
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E and B-Modes Lensing




Primary:
SW Smaller Angles
Baryonic
oscillations
Doppler

Secondary:
ISW
SZ
Lensing
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(a) Curvature

The WMAP CMB temperature
power spectrum

Equation of
State
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END for now!!!
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Define “recombination”
Describe how the CMB arises and why it is a blackbody 
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Estimate the redshift of recombination from T0=2.7K
Discuss results on the frequency spectrum of the CMB
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	Recombination
	Early times
Universe is hot
Electrons are free
Light scatters off electrons

Recombination

Late times
Universe is cooler
e- and p+ form hydrogen
Light travels freely
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But no-one realised it at the time (cf “discovery” in 1965)
1940 McKellar measured CN lines
CN was at a temperature of 2.7K




Hoyle made the connection in 1950
"[the Big Bang model] would lead to a temperature of the radiation at present maintained throughout the whole of space much greater than McKellar's determination for some regions within the Galaxy." 
Yet other calculations of the Big Bang (Alpher and Herman 1949) predicted T ~ 1K to 5K

	The frequency spectrum
	Observe perfect black body at 2.725K
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	Evolution of a black-body spectrum with time
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Revision: The Planck spectrum
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Mean energy of a photon is ~ 3kBT

To retain black-body shape, need
   T
   1/T  a
Light effectively stretches with the Universe

	Estimate zrec from T0=2.73K
	zrec = redshift of recombination
Ionization energy of Hydrogen
Energy required to split H -> p + e 
I =13.6 eV

Simplest estimate:
Mean energy of photons in Universe at given time is 3kB T
Need 3 kB T ~   I    for ionization
Gives T ~ 50,000K
But: ratio of no. photons to no. baryons ~109
Can have a cooler Universe ionizing baryons completely
Exact answer: T ~ 3000K see derivation in class
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