2. Active Galaxies

- 2.1 Taxonomy
- 2.2 The mass of the central engine
- 2.3 Models of AGNs
- 2.4 Quasars as cosmological probes

Active galaxies: interface with JL

All of JL chapter 3 is examinable, except:

- 3.1 and 3.2 are (hopefully) a revision of earlier courses
- 3.4.4 An accretion disk should be basic stuff

Additional examinable notes will be provided on:

- Eddington limit will be derived
- Quasar luminosity function and evolution (log(N)log(S) and V/V_{max} tests)

Definition of an active galaxy

- What is an active galaxy?
 - Radiation is not directly attributable to stars or dust
 - Usually very powerful: ~10¹¹ L_{solar} in ~1AU
- What is an AGN?
 - Active Galactic Nucleus
 - Non-stellar radiation comes from small region
 - Is in the center of galaxy, if galaxy is seen
 - AGN used interchangably with "active galaxy"
- Role in galaxy formation unknown
 - Special type of galaxy? or short phase of every galaxy?
- Four main classes:
 - Seyfert galaxies, Quasars, Radio galaxies, Blazars

2.1 Taxonomy

List of topics and summary of properties:

- Seyfert galaxies
 - Galaxies with very bright nuclei
- Quasars
 - Point-like, extremely bright
- Radio galaxies
 - Radio lobes beyond galaxies (often in pairs)
- Blazars
 - Extremely variable

Seyfert Galaxies

- Galaxies with very bright nuclei
 - Nuclei are unresolved in optical
 - Almost all are spiral galaxies
 - Variable over time
- Excess radiation in far ir and other bands
- Type 1 Seyferts: Two sets of emission lines
 - "Narrow lines": Widths ~400 km s⁻¹. Mostly forbidden
 - NB. this is wide cf typical HII region
 - "Broad lines": Widths ~10 000 km s⁻¹. All permitted lines.
- Type 2 Seyferts: Only narrow lines, no broad lines.
- Type 1.5 Seyferts: somewhere in between

Quasars

- Point-like, extremely bright
 - in both radio and optical
 - Quasi-stellar radio source/object -> quasar
 - Many are variable on times of months or days
- Spectral excesses in IR and other λ s
- Faint host galaxies ("quasar fuzz")
- Strong broad lines, weaker narrow lines
 - Strong Lyman- α
- Radio loud quasars: strong in radio
 - ~10% of quasars
 - many have jet(s)

http://chandra.harvard.edu/photo/2000/0131/ NASA/CXC/SAO/H.Marshall et al.

Radio galaxies

- The majority of known radio objects
- Pairs of bright lobes
 - fed by narrow jets from faint core
- Two types:
 - Broad-line radio galaxy (BLRG)
 - Narrow-line radio galaxy (NLRG)
- Often in elliptical galaxies
 - these often have dust lanes

Radio Galaxy 3C296
Radio/optical superposition

Copyright (c) NRAO/AUI 1999

Blazars

- Like quasars, but variable on days or less
- All radio loud
- Two subclasses
 - -BL Lac: emission lines are absent or weak
 - Not very bright
 - Originally thought to be a variable star
 - OVVs: Optically violent variables
 - Much brighter
 - Strong broad emission lines

2.2 The central engine

List of topics:

- The size of AGNs (JL 3.4.1)
- The mass of the supermassive black hole
 - based on Schwarzchild radius (JL 3.4.3)
 - based on Eddington Limit
 - based on reverberation mapping (JL p163)
- Accretion power (JL 3.4.5)

The size of AGNs

- Nuclei are unresolved in optical and radio
 - Radio resolution ~0.001 arcsec (VLBI)
 - Nearest AGN (NGC 4395) 4.3 Mpc away
 - Must be $<\sim 0.02 pc = 4000 AU$
 - Size = θ (in radians) x distance
- Nuclei are highly variable ~ hours ~10⁴ s
 - Size \sim c x time \sim 10⁻⁴pc = 20 AU
- Quasars are brighter than entire galaxies
 - $\sim 10^{11} L_{solar}$ in 20 AU!
 - Believed to contain a black hole

If soject bigger than 20.1t. U. then cart explain fust van ation.

Mass from Schwarzchild radius

- Observed size > Schwarzschild radius
 - Puts an upper limit on the mass of a BH
- $R_s = 2 GM / c^2 < Observed size ~ (0^{-4} pc^{-20.16})$

$$\triangle$$
 M < 10⁹ M_{solar}

B.
$$M < 10^{11} M_{solar}$$

$$C. M < 10^{13} M_{solar}$$

Why is light emitted by an accretion disk?

- A. Infalling material strikes the surface
- B. Stars in the disk
- C. Viscous differential rotation
- D. Nuclear reactions in the disk

Hydrogen burning releases 0.7% of rest mass energy. How much does accretion release?

A.
$$\sim 0.1\%$$

What is the momentum of a photon?

A.
$$h v$$
B. $h \lambda$
C. $h / \lambda = E$

Mass from Eddington limit

- Gravitational attraction > radiation pressure
- Consider HI on spherical shell, lit by luminosity L
 - Radiation pressure = momentum flux = ____

- Force on an electron = pressure x cross section
- Gravitational attraction > radiation pressure

- Supermassive black hole
 - cf black hole produced on death of massive star

Mass from reverberation mapping

- Broad lines imply rotation at 7000 km s⁻¹
 - Can't be thermal broadening since HI is seen
- Broad line variation lags continuum by ~10 days
 - Assume is due to light travel time to BL region
 - Radius of BL region is ~ 0.01 pc
- Apply virial theorem to get the mass

Concensus of all three methods: M ~10⁸ M
_{solar}

2.3 Models of AGNs

List of topics:

- The dusty torus (JL 3.5.1)
- The broad line regions (JL 3.5.2)
- Unified models (JL 3.5.3)

First task:

Dust evaporates at ~2000K Estimate the minimum radius of the torus

Dust evaporates at ~2000K Estimate the minimum radius of the torus

- Flux density at radius r ~ L/ (4 π r²)
- Dust grain of radius a absorbs power
 - $\sim \text{flux x area} = \pi \text{ a}^2 \text{ L}/(4 \pi \text{ r}^2)$
- Dust grain radiates as black body at T
 - power radiated = $4 \pi a^2 \sigma T^4$
- In equilibrium the above are equal
 - $r \sim sqrt(L/(16 \setminus T^4))$
- If dust is at 2000K at minimum radius
 - assume L $\sim 10^{38}$ W
 - $r \sim 0.05 pc$

The broad-line region

- Made up of gas clouds
 - illuminated by central engine esp uv, X-ray
 - re-emit energy as emission lines
 - see similar gas content to galactic HII regions
- No forbidden lines, so not very underdense
- From reverberation mapping slide
 - radius ~0.01 pc
 - rotation speed ~ 7000 km s⁻¹
- Current estimates:
 - − ~10¹⁰ individual clouds
 - total mass of gas \sim 10 M_{solar}

Unified models

Theory: there are only two types of AGN

Radio Loud AGN

Radio Quiet AGN

http://www.asdc.asi.it/bepposax/calendar/

2.4 Quasars as cosmological probes

List of topics:

- Gunn-Peterson test
- log(N)-log(S) test
- V/V_{max} test

Not in JL. See Peterson

Gunn-Peterson Test

- Quasar light is absorbed by intervening material
 - Hydrogen clouds
 - Damped Ly-α systems (proto-galaxies?)
- If continuous neutral hydrogen exists over range of z
 - Expect rest-frame Ly- α to be absorbed
 - Expect absorption bluewards of quasar Ly-α
 - Called Gunn-Peterson trough
- Only observed in 2001 at z~6

EVIDENCE FOR REIONIZATION AT $Z \sim 6$: DETECTION OF A GUNN-PETERSON TROUGH IN A Z=6.28 QUASAR^{1,2}

Robert H. Becker^{3,4}, Xiaohui Fan⁵, Richard L. White⁶, Michael A. Strauss⁷, Vijay K. Narayanan⁷, Robert H. Lupton⁷, James E. Gunn⁷, James Annis⁸, Neta A. Bahcall⁷, J. Brinkmann⁹, A. J. Connolly¹⁰, István Csabai^{11,12}, Paul C. Czarapata⁸, Mamoru Doi¹³, Timothy M. Heckman¹¹, G. S. Hennessy¹⁴, Željko Ivezić⁷, G. R. Knapp⁷, Don Q. Lamb¹⁵, Timothy A. McKay¹⁶, Jeffrey A. Munn¹⁷, Thomas Nash⁸, Robert Nichol¹⁸, Jeffrey R. Pier¹⁷, Gordon T. Richards¹⁹, Donald P. Schneider¹⁹, Chris Stoughton⁸, Alexander S. Szalay¹¹, Anirudda R. Thakar¹¹, D. G. York^{15,20}

Accepted by the Astronomical Journal

ABSTRACT

We present moderate resolution Keck spectroscopy of quasars at z=5.82, 5.99 and 6.28, discovered by the Sloan Digital Sky Survey (SDSS). We find that the Ly α absorption in the spectra of these quasars evolves strongly with redshift. To $z\sim5.7$, the Ly α absorption evolves as expected from an extrapolation from lower redshifts. However, in the highest redshift object, SDSSp J103027.10+052455.0 (z=6.28), the average transmitted flux is 0.0038 ± 0.0026 times that of the continuum level over 8450 Å < λ < 8710Å (5.95 < z_{abs} < 6.16), consistent with zero flux. Thus the flux level drops by a factor of > 150, and is consistent with zero flux in the Ly α forest region immediately blueward of the Ly α emission line, compared with a drop by a factor of \sim 10 at $z_{abs}\sim5.3$. A similar break is seen at Ly β ; because of the decreased oscillator strength of this transition, this allows us to put a considerably stronger limit, $\tau_{eff} > 20$, on the optical depth to Ly α absorption at z=6.

This is a clear detection of a complete Gunn-Peterson trough, caused by neutral hydrogen in the intergalactic medium. Even a small neutral hydrogen fraction in the intergalactic medium would result in an undetectable flux in the Ly α forest region. Therefore, the existence of the Gunn-Peterson trough by itself does not indicate that the quasar is observed prior to the reionization epoch. However, the fast evolution of the mean absorption in these high-redshift quasars suggests that the mean ionizing background along the line of sight to this quasar has declined significantly from $z \sim 5$ to 6, and the universe is approaching the reionization epoch at $z \sim 6$.

Becker et al astro-ph/0108097

log(N) – log(S) test

- Aim: see if quasar numbers change with z
- If quasar no. density is constant n(r)=n₀
 - and quasars all have the same luminosity L
- Observe with a limiting flux S
 - See all objects out to $r_{max} = (L/(4\pi S))^{-0.5}$
 - See a number N(S) = $\int_0^r max n(r) r^2 dr$ = $n_0 r_{max}^3 / 3 = n_0 (L/(4\pi S))^{-1.5} / 3$
- Plot log(N) vs log(S).
 - Should see slope of -1.5 if no evolution
- Problems with log(N) log(S)
 - Assumes one L, or non-evolving lum. fn.
 - Gives false-positive if survey is incomplete (objects missing close to S)

V/V_{max} test

- Does not give false positive if incomplete
- Consider each object, distance r
 - Find maximum distance at which could have seen object = r_{max}
 - Calculate $V/V_{max} = (r/r_{max})^3$
- If uniform number density <V/V_{max}>=0.5

Prove that for a single object, expect <V/V_{max}>=0.5

- Object has some r_{max} so V_{max} = 4 π r_{max} ³ / 3
- Average over possible positions of object, r
 - If uniformly distributed $n(r) = n_0$
- $<V> = [\int_{V_{max}} n(r) V dV] / [\int_{V_{max}} n(r) dV]$ $= [\int_{0}^{rmax} (4 \pi r^{3} / 3) r^{2} dr] / [\int_{0}^{rmax} r^{2} dr]$ $= (4\pi/3) (r_{max}^{6} / 6) / (r_{max}^{3} / 3)$ $= V_{max} / 2$

We observe $\langle V/V_{max} \rangle = 0.65 + /- 0.03$ for quasars So there were more quasars in the past!