
Implementation of ‘Wp’ smoothing for EoR

foreground fitting

Geraint Harker

November 27, 2008

1 Introduction

At a given point on the sky, LOFAR measures a brightness temperature
T (ν) as a function of frequency, ν. We assume that we have a datacube in
which this function T (ν) has three components: the cosmological signal from
neutral hydrogen during the epoch of reionization, astrophysical foregrounds
and noise. The foregrounds are much brighter than the cosmological signal,
but are postulated to be smooth as a function of frequency. In this article we
describe an algorithm to estimate the contribution from the foregrounds as a
function of frequency by fitting T (ν) with a smooth curve. After subtracting
this fit, in an ideal case the residuals contain contributions only from the
noise and the cosmological signal.

Other methods of fitting the foregrounds have various drawbacks. Fitting
a given functional form — a power law or a polynomial of some specified
order, say — can introduce a bias if this form is incapable of accurately
representing the foregrounds. A form with many parameters can also be
vulnerable to ‘over-fitting’, where the signal we are interested in gets fitted
out because the fitting is too sensitive to small-scale features coming from
the cosmological signal and noise. This also appears to be a serious problem
with most ‘non-parametric’ fitting methods, such as smoothing splines. In
addition, because these methods penalize curvature (rather than change in
curvature) they are subject to the well-known problem of ‘attrition’ when
fitting a curved function.

We use, instead, the ‘Wp’ smoothing method described by Mächler
(1993, 1995). ‘Wp’ stands for ‘Wendepunkt’, the German word for ‘inflection
point’. This method penalizes changes in the curvature of the fitting func-
tion. We briefly review this method in Section 2 to give some background
and to establish some notation. Unfortunately, while this method gives us
a system of differential equations to solve which can be written down con-
cisely, the computation of the solution presents some difficulties. We have
implemented a method to solve them, which we describe in Section 3.

1

2 Overview of the method

We have a set of observations {(x1, y1), (x2, y2), . . . , (xn, yn)} which we wish
to fit with a smooth function f(x). Each yi may have an associated error,
σi. The inflection points of f are, by definition, the zeros of f ′′. We assume
the inflection points are known and label them wi, i = 1, 2, . . . , nw. Then
we may write

f ′′(x) = pw(x)ehf (x) (1)

where
pw(x)

def
= sf (x−w1)(x− w2) . . . (x− wnw) , (2)

sf = ±1 and hf is a function as many times differentiable as f ′′.
We may then express the problem as follows. We wish to find the func-

tion f which minimizes

n
∑

i=1

ρi(yi − f(xi)) + λ

∫ xn

x1

h′f (t)
2dt (3)

where λ is a Lagrange multiplier, the integral term measures the change
in curvature ‘apart from inflection points’ and the function ρi determines
the size of the penalty incurred when f(xi) deviates from yi. For simple
least-squares minimization, for example, ρi(δ) = 1

2δ
2 ∀i.

The solution of this minimization problem must then satisfy the following
ordinary differential equation (ODE):

h′′f = pwehfLf (4)

where, using the notation a+ = max(0, a),

Lf (x) = −
1

2λ

n
∑

i=1

(x− xi)+ψi(yi − f(xi)) (5)

and ψi(δ) = d
dδρi(δ). The solution must satisfy the ‘multi-boundary’ condi-

tions

h′f (x1) = h′f (xn) =
∑

i

ψi(yi − f(xi)) =
∑

i

xiψi(yi − f(xi)) = 0 . (6)

We may write ψi explicitly as ψi(δ) = δ for least squares, or, taking the
errors into account, as ψi(δ) = δ/σi. Alternatively, a more robust method
may use

ψi(δ) =

c δ/σi > c
δ/σi |δ/σi| ≤ c
−c δ/σi < −c

(7)

for some c > 0.

2

Not only are the boundary conditions problematic, but the ODE itself,
Eqn. 4, includes on the right-hand side a contribution from f(xi) for each
xi, meaning that the equation is not in the ‘standard form’ assumed by
off-the-shelf solvers for boundary value problems (BVPs).

Note, also, that the minimization is performed with sf and {wi} fixed.
To apply the procedure to an arbitrary data set, then, requires a further
minimization over the number and position of the inflection points. We
therefore require some method to give a starting approximation for f , f ′,
hf , h

′

f , nw, {wi} and sf .
In principle we should also like some method to choose the Lagrange

multiplier, λ. This has no ‘natural’ value, and indeed the method remains
well defined for λ→ 0 and λ→ ∞. Mächler suggests using the autocorrela-
tion function of the residuals. This could be problematic for our application,
since there may be real correlations in the noise between frequency bands
due to the cosmological signal, and in any case it still requires some level of
arbitrary choice. In practice, we simply choose a reasonable-looking value
for λ.

3 Implementation

3.1 BVP solver

The first task is to rewrite Eqn. 4 as a system of coupled first-order equations.
This is simply done as follows (recalling that pw is a function of x only, since
the parameters sf and {wi} are fixed), where we drop the f subscript on hf
and write out the function Lf explicitly to make the dependence on f clear:

h′(x) = g(x) ; (8)

g′(x) = pw(x)eh(x)

[

−
1

2λ

n
∑

i=1

(x− xi)+ψi(yi − f(xi))

]

; (9)

f ′(x) = k(x) ; (10)

k′(x) = pw(x)eh(x) . (11)

Eqns. 8 and 10 define our new functions g and k respectively. We may then
trivially reexpress the boundary conditions as

g(x1) = 0 ; (12)

g(xn) = 0 ; (13)
∑

i

ψi(yi − f(xi)) = 0 ; (14)

∑

i

xiψi(yi − f(xi)) = 0 . (15)

3

Eqns. 8–15 are not in the standard form required by most BVP solvers. A
typical solver requires the user to provide a function Φ defined by y ′ = Φ(x,y(x))
where each element of Φ corresponds to one of the equations in the system.
It also requires a function Γ such that the equation Γ(y(a),y(b)) = 0 ex-
presses the boundary conditions, with a and b being the endpoints of the
interval on which the problem is specified. Unfortunately, to evaluate Eqn. 9
requires us to know f(xi) for i = 1, . . . , n as well as f(x), while Eqns. 14
and 15, defining two of the the boundary conditions, involve the points
x2, . . . , xn−1 as well as x1 and xn.

In fact, dealing with the unusual boundary conditions is not such a
severe problem. Ascher & Russell (1981) catalogue a variety of ways to put
a system of differential equations into standard form, and an elegant method
is available for integral constraints such as Eqns. 14 and 15.

First consider Eqn. 14. We rewrite the left-hand side as the integral of a
piecewise-constant function (a step function) on the interval [x1, xn]. That
is, it becomes

∫ xn

x1

G(t, f(t))dt = 0 (16)

where

G(t, f(t)) =

2ψ1(y1−f(x1))
x2−x1

x1 ≤ t < x1+x2

2

2ψm(ym−f(xm))
xm+1−xm−1

xm−1+xm

2 ≤ t < xm+xm+1

2 1 < m < n

2ψn(yn−f(xn))
xn−xn−1

xn−1+xn

2 ≤ t ≤ xn

(17)
Now let

V (x) =

∫ x

x1

G(t, f(t))dt . (18)

Then V ′(x) = G(x, f(x)), V (x1) = 0 and V (xn) = 0. In other words, we
have rewritten the boundary condition (14) by adding the function V (x)
to our system of equations, with V ′ defined as shown and satisfying the
boundary conditions V (x1) = V (xn) = 0. V ′(x) is easy to compute because
it is piecewise-constant, and the new boundary condition is enforced at the
endpoints of the interval and does not require the value of any functions at
interior points.

Similarly, we may rewrite Eqn. 15 by introducing a new function W (x),
satisfying W (x1) = W (xn) = 0 and with a derivative W ′(x) = H(t, f(t))

4

given by

H(t, f(t)) =

2x1ψ1(y1−f(x1))
x2−x1

x1 ≤ t < x1+x2

2

2xmψm(ym−f(xm))
xm+1−xm−1

xm−1+xm

2 ≤ t < xm+xm+1

2 1 < m < n

2xnψn(yn−f(xn))
xn−xn−1

xn−1+xn

2 ≤ t ≤ xn

(19)
Thus we can see that the boundary conditions do not, in themselves,

present a special problem. The equations for V ′(x) and W ′(x) do, however,
suffer from the same problem as Eqn. 9; that is, they require knowledge of
f(xi) in addition to f(x). This appears to be a more difficult issue than the
one of boundary conditions which are not evaluated at the endpoints. We
therefore take an alternative approach, again suggested by Ascher & Russell
(1981).

We split the domain of solution into n−1 intervals, [x1, x2], [x2, x3], . . . ,
[xn−1, xn]. In each interval we change variables, letting

t =
x− xm

xm+1 − xm
for xm ≤ x ≤ xm+1 (20)

which maps each interval onto the unit interval, [0, 1]. Then, on this interval,
we define functions fm(t), gm(t), hm(t), km(t), pw,m(t) form = 1, 2, . . . , n−1
such that, for xm ≤ x ≤ xm+1, fm(t) = f(x), gm(t) = g(x), hm(t) = h(x),
km(t) = k(x) and pw,m(t) = pw(x). We further define the functions qm(t) for
m = 1, . . . , n where qm(t) = fm(0) for m = 1, . . . , n−1 and qn(t) = fn−1(1).
Our system of four equations (8–11) then becomes the following system of
5n− 4 equations (where dashes now indicate differentiation with respect to
t, and we have used the chain rule where necessary):

f ′m(t) = (xm+1 − xm)km(t) (21)

k′m(t) = (xm+1 − xm)pw,m(t)ehm(t) (22)

h′m(t) = (xm+1 − xm)gm(t) (23)

g′m(t) = (xm+1 − xm)pw,m(t)ehm(t)

×

{

−1

2λ

m
∑

i=1

[xm + (xm+1 − xm)t]ψi(yi − qi(t))

}

(24)

q′j(t) = 0 (25)

where the index m runs from 1 to n − 1 and j runs from 1 to n. The q
functions carry the value of f at the data points, f(xi), to the interior of
the intervals, a property which is imposed with the boundary conditions

qm(0) = fm(0) for m = 1, . . . , n− 1; (26)

qn(0) = fn−1(1) . (27)

5

Our original boundary conditions become

g1(0) = 0 ; (28)

gn−1(1) = 0 ; (29)
n

∑

i=1

ψi(yi − qi(0)) = 0 ; (30)

n
∑

i=1

xiψi(yi − qi(0)) = 0 . (31)

The remaining 4(n−2) boundary conditions come from imposing continuity
on the functions f(x), g(x), h(x) and k(x):

fm(1) = fm+1(0) ; (32)

gm(1) = gm+1(0) ; (33)

hm(1) = hm+1(0) ; (34)

km(1) = km+1(0) ; (35)

where here the index m runs from 1 to n− 2.
Note that the boundary conditions only involve the value of functions at

t = 0 and t = 1, and that to calculate the derivatives given by Eqns. 21–25
at a given value of t only requires the evaluation of functions at the same
value of t. The system is therefore suitable for solution using the MATLAB
routine bvp4c, which we call with an initial mesh of five evenly spaced points.

3.2 Finite difference scheme

Our implementation using a standard BVP solver appears, at present, to
be slow and somewhat unstable. This could be because the solver does not
exploit the special form of the problem. We have therefore tried a different
approach: discretizing the differential equation into a finite difference equa-
tion defined on some grid, and then solving the resulting nonlinear algebraic
system. This approach is similar to standard relaxation methods, though
the form of the problem again means that some tricks used for speeding
up relaxation methods do not apply. The main drawback we anticipate,
though, is that the size of the grid used to discretize the system must be
chosen beforehand, and is not adaptive.

As before, we have data points {(x1, y1), (x2, y2), . . . , (xn, yn)} and our
fitting function has inflection points at w1, w2, . . . , wnw . We choose a mesh
such that the abscissae of the data points are also mesh points. That is,
we have a mesh X1, X2, . . . , XN , where N ≥ n, and where Xmi

= xi for
i = 1, . . . n, with m1 = 1 and mn = N . That is, mi gives the position in the
mesh of the ith data point, and the first and last data points define the ends
of the grid.

6

Let f(Xi) = fi and h(Xi) = hi (which implies that f(xi) = fmi
). Then

we may discretize Eqn. 1 as

fj+1 − 2fj + fj−1

(Xj+1 −Xj)(Xj −Xj−1)
= pw(Xj)e

hj for j = 2, . . . , N − 1. (36)

Defining ∆j = (Xj+1 −Xj)(Xj −Xj−1), we have

fj+1 − 2fj + fj−1 − ∆jpw(Xj)e
hj = 0 . (37)

Similarly, we may rewrite Eqn. 4 as

hj+1 − 2hj + hj−1 − ∆jpw(Xj)e
hj

[

−
1

2λ

n
∑

i=1

(Xj − xi)+ψi(yi − fmi
)

]

= 0

(38)
where in each case the index j runs from 2 to N − 1. Since the grid and the
inflection points do not change, ∆jpw(Xj) can be precomputed for efficiency.

The boundary conditions now become:

h2 − h1 = 0 ; (39)

hN − hN−1 = 0 ; (40)
∑

i

ψi(yi − fmi
) = 0 ; (41)

∑

i

xiψi(yi − fmi
) = 0 . (42)

We therefore have 2N algebraic equations for the 2N unknowns, f1, . . . , fN
and h1, . . . , hN . Note that it is unnecessary to express the system in terms
of first-order equations, and indeed this would be undesirable as it would
increase the size of the system. We solve the system of equations, (37)–(42),
using the MATLAB routine fsolve. This provides a selection of optimiza-
tion algorithms to solve the general nonlinear problem F(Y) = 0; we have
found that the ‘Trust-Region-Reflective’ algorithm works best. As is the case
for the BVP solver, speed is improved by providing an analytical Jacobian
matrix

∂Fµ
∂Yν

for µ, ν = 1, . . . , 2N (43)

where Yi = fi and YN+i = hi for i = 1, . . . , N , and F = 0 expresses Eqns. 37–
42. Calculating the Jacobian is fiddly but the procedure should be clear,
and so is not reproduced here.

3.3 Providing an initial guess

It is generally important to specify a reasonable initial guess for the solution
of a boundary value problem. In many cases, the system has two or more

7

valid solutions and the right starting point is required to pick out the desired
one. Otherwise, a good guess may be needed to ensure that the solver
converges quickly (or indeed at all) on the solution.

Mächler recommends the use of log-splines to provide initial estimates
for sf , {wi} and f . Our implementation is at present less general. For EoR
foreground fitting, we assume that the foregrounds have no inflection points
(as would be true for a superposition of power laws with negative indices)
and fit a power law to obtain an initial estimate for sf and f .

References

Ascher, U. & Russell, R. D. 1981, SIAM Review, 23, 238

Mächler, M. 1993, Very smooth nonparametric curve estimation by penal-
izing change of curvature

—. 1995, Annals of Statistics, 23, 1496

8

