Modelling the foregrounds and the system response for DARE

Geraint Harker University of Colorado

Recap of the problem: foregrounds

'Robotic Science from the Moon' workshop, Boulder, Colorado

Recap of the problem: instrumental response

EDGES data

- Measured spectrum is multiplied by an instrumental response.
 - This is not known sufficiently accurately in advance.
 - Must be estimated from data, so it must be sufficiently smooth (designed to be so for DARE).
 - Removes degrees of freedom from the extracted signal.
- Spurious additive features and non-Gaussian noise may also be introduced by the instrument, but are minimized by DARE's strategy and design.

Interaction of foregrounds and system response

- The basic strategy is to use the smoothness of the foregrounds, compared to the signal which has spectral features.
 - If the foregrounds really are smooth, their size relative to the foregrounds does not present an insurmountable problem.
 - A problem arises if the instrumental response compromises this smoothness.
- Similarly, if there were no foregrounds, an instrumental response modelled to within 1% would yield a signal accurate to 1%.
 - A 1% error combined with foregrounds 10⁵ time larger than the signal yields errors 1000 times larger than the signal.
- The *combination* of large foregrounds with errors is what causes the problem.

Contributions to the foregrounds

- Spectrally smooth, diffuse foregrounds (around 2000K at 65 MHz).
 - Galactic synchrotron (~ 72%)
 - Galactic free-free (~1%)
 - A sea of unresolved extragalactic sources with synchrotron spectra (~27%)

• Radio recombination lines

- Narrow, occur at known frequencies
- Require sufficiently good spectral resolution (around 10 kHz) to detect and remove without discarding too much data.
- Local compact sources are diluted over the area of the beam
 - The Sun (tens of Kelvin except during bursts, when we can't observe)
 - Jupiter (a few millikelvin; bursts only occur at frequencies below 40 MHz)

• The Moon

- Used as a secondary calibrator
- Emits thermal radiation and reflects other foregrounds
- Contribution is modulated by changing the orientation of the spacecraft.

System response (EDGES case)

$\begin{aligned} T_{\rm ant}(\nu) &= \left[1 - |\Gamma(\nu)|^2\right] T_{\rm sky}(\nu) + \\ &\left[2\varepsilon |\Gamma|\cos(\beta) + \varepsilon^2 |\Gamma|^2 \cos^2(\beta) + (1 - \varepsilon)^2 |\Gamma|^2\right] T_{\rm rev}(\nu) + \dots \end{aligned}$

*T*_{ant} : antenna temperature, calibrated by switching between loads

- T_{sky} : sky temperature
- *T*_{rcv} : temperature of receiver noise propagated back towards the antenna
- $|\Gamma|^2$: power reflection coefficient between antenna and receiver
- β : phase shift due to electrical path length
- ε : voltage correlation coefficient

Rogers & Bowman (2010)

Different foreground models: stochastic physical model

- Use a physical model for synchrotron, free-free, radio clusters, etc.
- Stochastic model using observationally motivated prescriptions for the power spectrum, frequency dependence, etc.
- More suitable for modelling small areas of the sky, e.g. for upcoming LOFAR observations.

Wed.6th Oct. 2010

'Robotic Science from the Moon' workshop, Boulder, Colorado

Different foreground models: all-sky physical models

- Make a model of emission from the whole sky using 3D models of the Galaxy.
- Can use e.g. polarization data and information from other wavebands to constrain the 3D model.
- Doesn't include the more complicated or hard-tomodel aspects of the sky.

Sun at al. (2008)

Different foreground models: direct reconstruction from data

- Principal component analysis of a variety of low-frequency large-area surveys.
- Includes all relevant diffuse foregrounds by construction.
- Inhomogeneous coverage.
- Even here, some modelling is involved to produce the maps.

de Oliveira-Costa et al. (2008) 150 MHz

log₁₀ (T / K)

Modelling the models

- Use the all-sky model as a test for our fitting routines.
- We fit a smooth function of frequency to simulated observations incorporating the foreground models, and subtract this off to leave noise + signal.
- At present, fitting the following form:

$$\log T_{\text{sky}} = \log T_0 + a_1 \log(\nu/\nu_0) + a_2 [\log(\nu/\nu_0)]^2 + a_3 [\log(\nu/\nu_0)]^3$$

Pritchard & Loeb (2010)

Power law, with a running of the spectral index, and a running of the running

Foregrounds as a function of position

log-log plot of spectra from
24 different sky areas
Overall normalization
changes by a factor of a few.

•de Oliveira-Costa sky model at 70 MHz with contours of a dipole beam overlaid.
•Contour spacing of 10%
•Of order 10 independent beam areas on the sky.

Using spatial variation of the foregrounds

- Averaged over a DARE beam, the 21-cm signal from any part of the sky is the same, while the foreground vary. This should be exploited in removing foregrounds! Several methods have been proposed.
- Independent component analysis
 - Extracts statistically independent components of the spectrum.
 - Non-parametric, but loses scaling information unless more assumptions are made.

• Matched filtering

- Use information from different sky areas to construct a correlation matrix for the foreground spectrum.
- Use this, plus a signal model, to construct a matched filter which optimally extracts a signal conforming to that model from the integrated spectrum.
- Maximum likelihood analysis (motivated in part by COBE FIRAS analysis)
 - Parametrize all the relevant components of the spectrum for all the sky areas under consideration.
 - Perform a search of a high-dimensional space to find the best combination of parameters.

Using spatial variation of the foregrounds

- Averaged over a DARE beam, the 21-cm signal from any part of the sky is the same, while the foreground vary. This should be exploited in removing foregrounds! Several methods have been proposed.
- Independent component analysis
 - Extracts statistically independent components of the spectrum.
 - Non-parametric, but loses scaling information unless more assumptions are made.

• Matched filtering

- Use information from different sky areas to construct a correlation matrix for the foreground spectrum.
- Use this, plus a signal model, to construct a matched filter which optimally extracts a signal conforming to that model from the integrated spectrum.
- Maximum likelihood analysis (motivated in part by COBE FIRAS analysis)
 - Parametrize all the relevant components of the spectrum for all the sky areas under consideration.
 - Perform a search of a high-dimensional space to find the best combination of parameters.

Parameters to be fit

Description of contribution	Number of parameters
Frequency and amplitude of turning points of 21-cm signal	2×3 = 6
Foreground spectrum in <i>n</i> different regions of the sky	4n
Instrumental frequency response (fit with a low-order polynomial)	~6
Spectrum of the quiet Sun and Jupiter (relatively weak)	~8
Spectrum and reflectivity of the Moon	?
Total	>20 + 4n

Preliminary results

Confidence regions for the parameters of the turning points from a Markov Chain Monte Carlo analysis
1000 hrs of total integration
Parameters of the turning points and the diffuse foregrounds are included in the analysis

Wed.6th Oct. 2010

'Robotic Science from the Moon' workshop Boulder, Colorado

Future work

- Include the rest of the parameters shown in the table into the analysis
 - Need to work out how to parametrize some parts!
 - Speed up the MCMC code to deal with such a highdimensional minimization
- Revisit other approaches
 - Independent component analysis
 - Matched filtering

 Fit foregrounds directly from the sky model, rather than parametrizing them before inputting them.

Summary

- We choose to use a model for the foregrounds constructed from a principal components analysis of low-frequency data.
- Instrument modelling is motivated by that done for EDGES, along with models for the DARE antenna.
- By using spatial variation of the foregrounds, we end up with tens of parameters to fit: our fiducial method uses a Markov Chain Monte Carlo technique to map the likelihood surface.
- Good constraints are achieved on the signal for a mission with the projected lifetime of DARE, but much work still needs to be done on modelling all the relevant physical effects.