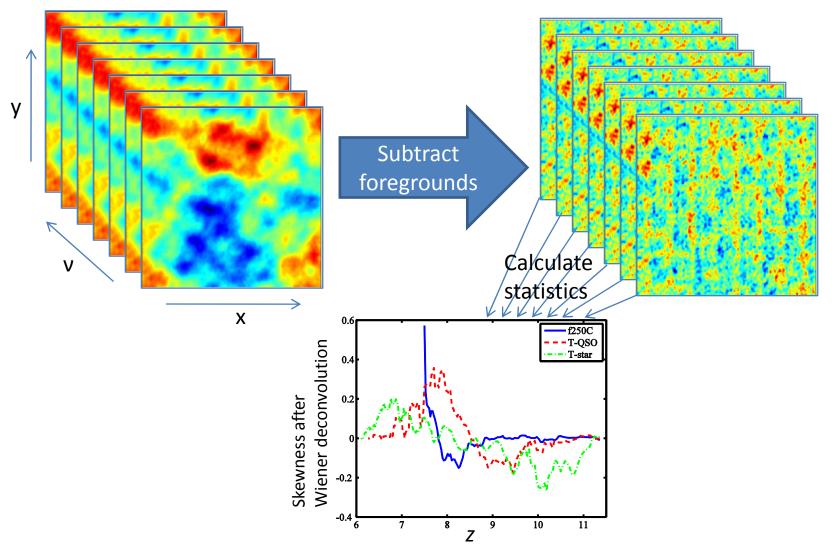
Non-parametric foreground fitting

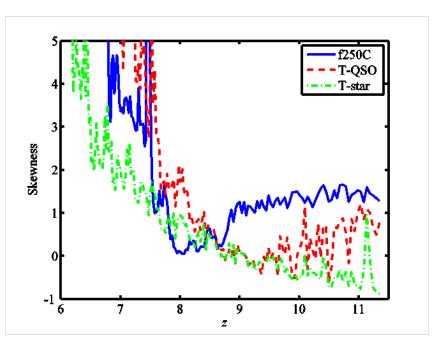
Geraint Harker

Signal extraction in two stages

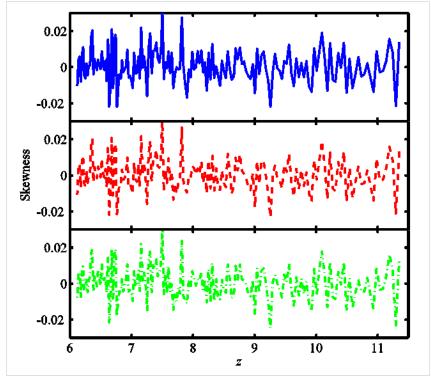


The importance of good foreground fitting

Original simulations



Residuals

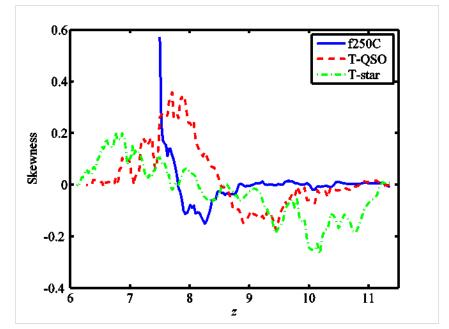


The importance of good foreground fitting

Original simulations

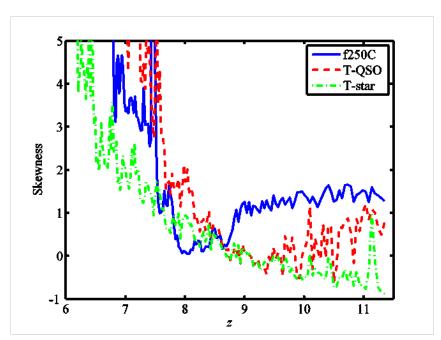
5 4 7 8 9 10 11

Residuals after Wiener deconvolution

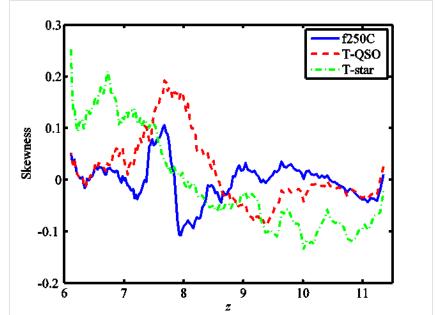


The importance of good foreground fitting

Original simulations



Residuals after perfect foreground subtraction



Wish list for a foreground fitting algorithm

- Accuracy.
- Lack of bias.
- Avoidance of under-fitting or over-fitting.
- Make minimal assumptions about the functional form of the foregrounds; i.e., exploit their smoothness directly.
- Speed (less important if we only wish to subtract the foregrounds once, in postprocessing).

Statistical approach

• Model data points (x_i, y_i) by:

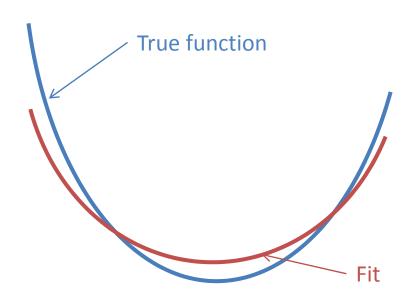
$$y_i = f(x_i) + \varepsilon_i, i = 1, \dots, n$$

Then we wish to solve the following problem:

$$\min_{f} \left\{ \sum_{i=1}^{n} \rho_i(y_i - f(x_i)) + \lambda R[f] \right\}$$
"Least squares" Roughness penalty

Choosing a roughness penalty R[f]

- Require a roughness penalty that stops the curve wiggling towards individual data points, but avoids the problem of attrition.
- 'Smoothing splines' use integrated curvature as the roughness penalty, but in Wp smoothing the integrated change of curvature is used instead.



Wp smoothing

- An approximation to the change of curvature, f'''/f'', blows up at the inflection points f''=0.
- R[f] measures the change of curvature 'apart from the inflection points', w_i
- Perform the minimization with the position of the inflection points (and s_f) fixed.

$$R[f] = \int_{x_1}^{x_n} h'_f(t) dt$$

$$f''(x) = p_{\mathbf{w}}(x)e^{h_f(x)}$$

$$p_{\mathbf{w}}(x) = s_f(x - w_1)(x - w_2)$$
$$\times \dots (x - w_{n_w})$$

Wp smoothing

• Mächler (1993,1995), who proposed the method, showed that the variational problem leads to the following differential equation:

$$h_f'' = p_{\mathbf{w}} e^{h_f} \left[-\frac{1}{2\lambda} \sum_{i=1}^n (x - x_i)_+ \psi_i (y_i - f(x_i)) \right]$$

where a_{+} =max(0,a), $\psi_{i}(\delta)=rac{\mathrm{d}}{\mathrm{d}\delta}
ho_{i}(\delta)$, and the boundary conditions are

$$h'_f(x_1) = h'_f(x_n) = \sum_i \psi_i(y_i - f(x_i)) = \sum_i x_i \psi_i(y_i - f(x_i)) = 0$$

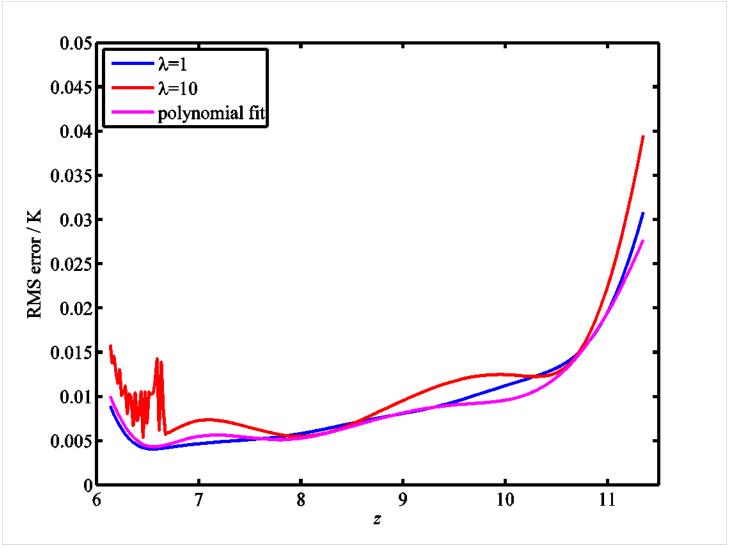
Implementation

- In general we need a method to find the number of inflection points, and need to perform a further minimization over their position.
- For the foreground fitting we find that it works well to have no inflection points (this would be the case anyway for a sum of negative-index power laws).
- The differential equation and the boundary conditions are in a nonstandard form:
 - Can rewrite as a system of 5*n*-4 coupled first-order equations and use a standard BVP solver.
 - Alternatively, convert to a finite difference equation and perform a multidimensional function minimization (seems better so far).
- Either approach requires a reasonable initial guess for the solution;
 we fit a power law since this has no inflection points.

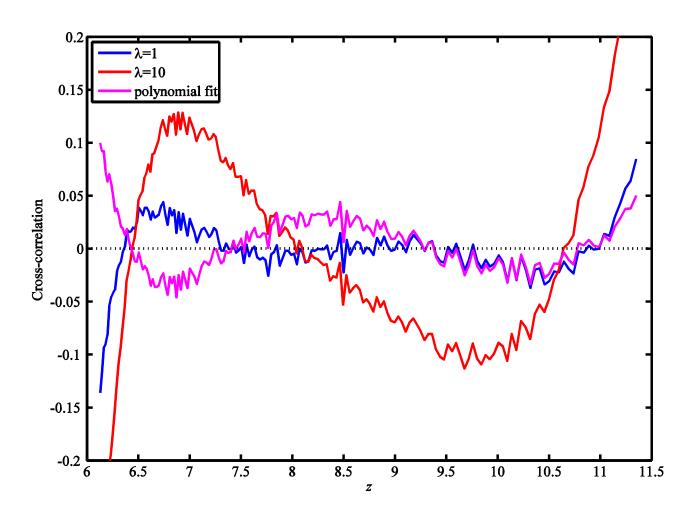
Results

- Approx. 3s of computing time per sightline for 170 points; this depends on the quality of the initial guess.
- rms fitting errors small compared to the random noise and comparable to or better than for polynomial or power law fitting (where we have to have assumed a functional form).
- Better cross-correlation properties with the (known, simulated) foregrounds compared to polynomial fitting.

RMS fitting error



Cross-correlation of residuals with foregrounds



Ongoing work

- Find the best value for λ.
- What's the effect of using more or fewer bins?
- Ways to alleviate the problems at the ends of the range (change weighting scheme?); can we deal with gaps?
- Generalize and speed up the Wp algorithm (another use for GPUs?).
- Does the improved foreground fitting allow us to relax the assumptions we make when processing the foregroundsubtracted images (e.g. the signal correlation matrix in Wiener deconvolution)?
- Power spectrum estimation; discriminating between models.
- Other statistics.

Conclusions

- Accurate and unbiased foreground fitting is a crucial part of our signal extraction.
- Non-parametric methods do not require us to specify a particular functional form for the foregrounds.
- Wp smoothing, which penalizes the integrated change of curvature (apart from inflection points) is a promising method.
- Implementations are computationally expensive at the moment but not unreasonable.
- We find it gives accurate and unbiased estimates of the simulated foregrounds making only general assumptions about smoothness, especially in the middle of the frequency range.