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Motivation (I)
Information from the power spectrum
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• Measure the power spectrum of ΔδTb , the difference of δTb from 
the mean.

• Contains information on:
– the growth of structure (through 1+δ);
– reionization (through x), e.g. growth of bubbles;
– heating (through dependence on the spin temperature);
– cosmology;
– redshift-space distortions.

• Decomposing P(k,μ) in powers of μ may help disentangle these 
effects.



Components of the data cubes
• Cosmological signal 

here from the f250C 
simulation of Iliev et al. 
(2008).

• Foregrounds and 
cosmological signal are 
convolved with the 
instrumental response.

• Uncorrelated noise in 
the uv plane: for one 
year with one beam, 
corresponds to an rms 
of 52mK at 150 MHz.

• Need foregrounds 
which are smooth as a 
function of frequency.
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Foregrounds as in Jelid et al. (2008).



Wp smoothing: non-parametric 
foreground fitting

• Model data points (xi ,yi ) by:

• Then we wish to solve the following problem:

• Here the roughness penalty measures the integrated change in curvature 
‘apart from inflection points’; inflection points are the primary measure of 
roughness.

• The solution of this minimization is the solution of a boundary value 
problem derived by Mächler.

• ‘Wp’ stands for ‘Wendepunkt’.
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“Least squares” Roughness penalty



Motivation (II)
Step 1: Measure the RMS?

• First aim: establish that 
we can detect any signal 
at all from the EoR.

• Seems reasonable to do 
this using the integrated 
RMS, which evolves with 
redshift.

• Unfortunately, polluted 
by under- and over-
fitting, and by edge 
effects.

• Can using scale-
dependence help?
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Scale dependence and size of 
components of the signal

• Noise (receiver noise plus sky 
noise) dominates on small 
scales, leading to problems 
from over-fitting.

• Foregrounds dominate on 
larger scales, leading to 
problems from under-fitting.

• All scales contribute to the 
integrated RMS, but using the 
whole power spectrum we 
may be able to pick out the 
most favourable scales.

• Recovered shape provides a 
further check.
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Motivation (III): using the power 
spectrum to recover the skewness

• Redshift evolution of the 
skewness of residual maps 
may provide a confirmation 
of a detection (especially if 
we see negative skewness).

• Need to deconvolve the 
maps (e.g. Wiener 
deconvolution) before 
calculating the skewness, 
which requires an estimate 
of the correlation matrix 
(and hence angular power 
spectrum) of the signal.
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• Recovery seems to be 
robust to changes in the 
fitting algorithm.



Example evolution of the signal power 
spectrum

• Spectra here are 
convolved with the 
instrumental response 
(hence high-k cut-off).

• Growth of a feature on 
small scales due to 
formation of bubbles.

• Feature broadens and 
moves to larger scales as 
bubbles grow.

• At low redshift, signal 
drops because of a low 
neutral fraction.
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Power spectra with perfect foreground 
subtraction (1 year, 1 beam)

Low redshift High redshift
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Power spectra with perfect foreground 
subtraction (1 year, 4 beams)

Low redshift High redshift
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Power spectra with perfect foreground 
subtraction (4 years, 4 beams)

Low redshift High redshift
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Results using Wp smoothing for 
foreground subtraction (1 yr, 1 beam)

Low redshift High redshift
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Results using Wp smoothing for 
foreground subtraction (1 yr, 4 beams)

Low redshift High redshift
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Results using Wp smoothing for 
foreground subtraction (4 yr, 4 beams)

Low redshift High redshift
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1D and 2D power spectra

1D power spectrum – high z, 1 yr, 
1 beam

2D power spectrum – low z,         
4 yrs, 4 beams
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Redshift-dependent uv coverage

• The uv coverage changes as a 
function of redshift: high ν
increases the maximum k, 
moves holes across the uv
plane and contracts ‘frizz’ 
from the PSF across 
unresolved point sources in 
the image plane.

• The latter effect introduces 
spurious small-scale power if 
we fit the foregrounds in the 
image plane.

• The most drastic solution is to 
throw away data until the uv
coverage is the same at all 
frequencies.
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Fitting in the uv plane

Starting from images Starting from Fourier space
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Comments and conclusions

• The power spectrum is a rich source of physical information.
• The different scale-dependence of the foregrounds, noise and 

cosmological signal may help in extracting the signal.
• Only a rough estimate of the power spectrum is required to extract the 

evolution of the skewness (after Wiener filtering).
• Foreground fitting is unlikely to be a bottleneck in extraction: we can 

afford something sophisticated even if it’s computationally expensive.
• Realistic levels of noise and diffuse foregrounds do not, in themselves, 

seem to be a deal-breaker for power spectrum subtraction…
• …but the fitting process introduces biases: can they be corrected for using 

simulation results?
• As the integration time increases, we can expect continued qualitative 

improvements in what can be inferred from the data.
• The effects of variable uv coverage seem to be manageable with a 

carefully chosen fitting scheme.
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Future work

• How accurately can we really estimate the power spectrum of the noise?  
Probably need to use the data before they’re binned in time and 
frequency to give a final data cube.

• How is the ‘separation of powers’ (of μ) affected by the fitting and 
extraction process?

• Continue to integrate improved models of the instrument, foregrounds, 
noise and a variety of signal models incorporating larger scales.

• Effect of other error sources: ionosphere, polarization calibration, point 
source subtraction errors…

• Incorporate signal correlations and a systematic way of choosing the 
amount of smoothing in the foreground fitting.

• Can we gain from mismatched spatial and frequency resolution?
• Effect of power spectrum errors on recovery of evolution of skewness.
• Full error analysis including cosmic variance; effect of multiple windows.
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