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Outline

Introduction to foreground fitting for 21-cm
experiments.

Different approaches:

— Parametric vs. non-parametric fitting;

— (u,v,v) space vs. (6,,0,,v) space.

How should different approaches be evaluated?

Results and interpretations from foreground
fitting simulations for LOFAR.

— Effects on plane-of-sky and line-of sight modes.



Diffuse, unpolarized foregrounds

Signal RMS = a few mK
(maybe up to =20mK).
Noise = a few tens of mK for

integration times of a few
hundred hours.

Typical line of sight
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Foreground models

de Oliveira-Costa at al. (2008), 150 MHz

1 Jeli¢ et al. (2008)
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e Uses a physical model for
e Principal components analysis of synchrotron, free-free, radio
existing radio surveys. clusters etc.
e Useful for observations covering a * More representative of sky

regions for planned LOFAR

very large area. (
observations
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Statistical approaches

Parametric

Good results if the model
really represents the
foregrounds well.

Somewhat inflexible.

Fits well with estimating
parameters of a signal model
simultaneously.

Usually computationally
cheap.

Some hope of choosing a

parametrization from physics.

Non-parametric

Big choice of techniques.

Many techniques overfit: need
to choose carefully.

May still be some ‘parameters
to choose, but this can add
flexibility.

Need only specify some
general properties of the
foregrounds, rather than a
specific model.

Sometimes computationally
expensive.
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Different spaces

(GX,BV,V) space

Uniform noise properties
across each image.

Only need to fit a real
function, but may be more
pixels to fit.

Hard to take into account
correlation properties of
adjacent pixels.

Trouble with e.g. a
chromatic p.s.f.

(u,v,v) space

Must fit a complex function
at each point.

Reasonable uv binning
copes well with correlation
properties.

Better results for chromatic
effects.

Noise varies across the uv
plane: need something
adaptive.



Different uv ‘lines of sight’

Centre Edge




Evaluating foreground fitting
techniques

e For known foregrounds:
— Size of fitting errors for individual lines of sight.
— Residual RMS at a given frequency between different lines
of sight: under-/over-fitting?

* Looking at power spectra may be a more sophisticated version of
the same thing.

— Correlation of residuals with known foregrounds.

e For a realistic case:

— Comparison between statistics where foreground residuals
have different effects, e.g. power spectra from cross-
correlation and from autocorrelation with estimated noise,
and perhaps higher-order statistics.



Wp smoothing: non-parametric
foreground fitting

Model data points (x;,y; ) by:
yi = fx;) +e, t=1,.
Then we wish to solve the following problem:
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“Least squares” Roughness penalty

Here the roughness penalty measures the integrated change in curvature
‘apart from inflection points’; inflection points are the primary measure of
roughness.

The solution of this minimization is the solution of a boundary value
problem derived by Machler.

‘Wp’ stands for ‘Wendepunkt’.



Simulated LOFAR results

e RMS as a function of

2 frequency shows similar
2 results for Wp smoothing
and polynomial fitting.
T = M | * Polynomial residuals
g LSmeothing spline '\, more correlated with
foregrounds, however.
04} .
AV .--._* 1 * Smoothing splines (a very
z, ] l.r __—ﬂ-.._._._..____*,_:_.-r""'_; ........... . .
RCTRITTT Y] simple non-parametric
oy approach) do worse than
e | | either.
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Example power spectra and errors

- ¢ Estimate the power
spectrum by computing the
autocorrelation of the
foreground fitting residuals
N — and subtracting a noise
7=8.4911 e power spectrum
e 300 hrs, 1 beam, 1 window.
H”( e Recover the power

A spectrum reasonably well at

low redshift, but lose

intermediate scales at high
redshift.

Some bias at large scales.

7=9.9564 e
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Fitting in the (u,v,v) cube

Wp smoothing
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log, (A% / (mK)?)

Cross-correlation

e Errors turn up in different

Power spectra in a slice 76.2377 Rl Mpc deep centred at

2=7.3717; 900 hrs, 1 beam, 1window; d-pixel bins. com b inations in a cross-

[|—CS

~ =~ Noise (cons've)

Residuals
*  Recovered CS

correlation estimator.
. e (Other considerations:

— Need to split data into
epochs, and either fit
foregrounds separately, or
live with correlated errors
between epochs.

— Should yield positive
power spectra.
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log, K/ (h Mpc™)) — Doesn’t need such a good

noise estimate.



Autocorrelation vs. cross-correlation

o Autocorrelation

F}—i—f’"’ )+ P(E) + (e(k)[s(k) +n(k)]* + [s(k) + n(k)]e(k)*) |k)=x
Slgnal \ Fitting errors and cross terms (simulate?)
power
Residual N0|§e POWEr
(estimate
power

and subtract)

 Cross-correlation

/(fﬁ;.}-/f’ —I—{Hf—’ 30+ (e1s \}—l—(f-lq’-'z

_ f
Cross-correlation Signal Cross terms (no noise)

of two epochs power



Angular and line-of-sight power
spectra

Angular power spectrum

eLarge-scale bias as for 3D power

*Goes to larger scales without risking

evolution effects
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Line-of-sight power spectrum

*Can reach smaller scales (depending

on frequency resolution)
*No large-scale bias
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Why does the bias show up in the
angular power spectrum?

e We assume smoothness in the frequency direction, but the
fitting leads to loss of power in angular modes.

 Along one line of sight, for a narrow frequency range, we
are likely to make an error estimating the foregrounds
which is roughly constant with frequency.

— No change in the one-dimensional power spectrum over this
frequency range.

— For the angular power spectrum, this constant offset is likely to
be different between different lines of sight, leading to bias in
the power spectrum.

— A similar offset between nearby lines of sight (because of large-
scale correlation in the foregrounds) would lead to the offset
being roughly constant within small regions, so the small-scale
power loss would be small.



Summary

Fair simulations of foregrounds are necessary to reasonably
compare different approaches.

Non-parametric methods may be a little more flexible and
less model-dependent, but can be awkward to work with.

Fitting in (u,v,v) space seems to work well and should
probably be preferred to real space, since it helps
overcome some nasty problems.

Fitting can have different and complicated effects on
angular and line-of-sight modes.

It may be possible to tune power spectrum estimators to
minimize the harmful effect of foreground fitting errors.

Otherwise, what role can simulations play in estimating
these errors in observations, in order to correct for them?
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