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1 Introduction

In studying cosmological dependence of, for example, clustering statistics,
it is convenient to have N-body simulations in a variety of cosmologies.
Then mock galaxy catalogues etc. can be constructed for these different
cosmologies and their properties studied.

We describe here some methods by which a simulation in one cosmol-
ogy can be used to mimic a simulation in a different cosmology sufficiently
well that the errors are not significant in the context of properties of the
mock catalogues. Fewer computationally expensive N-body simulations are
then required, which may be a considerable saving if the simulations are
large. Where relevant, we concentrate on rescaling output from GADGET
(Springel et al., 2001).

2 Preliminaries

Let comoving distances be denoted by x, and physical distances be denoted
by r = ax, so that a is the conventional scale factor, normalised such that its
value at redshift zero is a0 = 1. Let the Hubble Parameter H(a) = H0h(a),
where H0 = 100 km s−1 Mpc−1 and the present value of the Hubble Param-
eter is H(1) = H0h0, that is h0 = h(1).

Now we may write the critical density

ρcrit(a) =
3H2

0h2(a)

8πG
. (1)

By definition, we have ρ = ρcritΩ. Below, I will consider ρ without a sub-
script to be the matter density and Ω to be the ratio of matter density to
critical density. A subscript zero denotes their values at redshift zero as is
conventional. Then,

ρ(a) =
ρ0

a3
= ρcrit(a)Ω(a) =

3H2
0

8πG
h2(a)Ω(a) , (2)
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that is,

h2(a)a3Ω(a) =
8πG

3H2
0

ρ0 (3)

= h2
0

8πG

3H2
0
h2

0

ρ0 (4)

= h2
0Ω0 (5)

which is a constant in any given cosmology.
Consider an isolated halo in its centre-of-mass frame in this cosmology,

consisting of particles labelled by i = 1, 2, . . . , n. Its potential energy is
given by

EP = −
∑

i

∑

j>i

Gmimj

|ri − rj |
(6)

= −
1

2a

∑

i

∑

j 6=i

Gmimj

|xi − xj|
, (7)

where we treat the positions as scalar quantities for clarity, since the gen-
eralisation to three dimensions is trivial. Its kinetic energy is then given
by

EK =
1

2

∑

i

mi

(
dri

dt

)2

(8)

=
1

2
ȧ2
∑

i

mi

(
xi + a

dxi

da

)2

(9)

=
1

2
a2H2

0h2(a)
∑

i

mi

(
xi + a

dxi

da

)2

(10)

after some elementary manipulation.
There is a slight complication, in that it is conventional to use a system

of units in which

mi =
m̃i

h0

and xi =
x̃i

h0

= ari =
ar̃i

h0

. (11)

In this system, the energies are also scaled in the same way, Ẽ = h0E. Then,

ẼP =
−1

2a

∑

i

∑

j 6=i

Gm̃im̃j

|x̃i − x̃j |
(12)

and

ẼK =
1

2

(
aH0h(a)

h0

)2∑

i

m̃i

(
x̃i + a

dx̃i

da

)2

. (13)
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GADGET stores the particle positions x̃, using units of h−1

0
Mpc. Stor-

ing the velocities is slightly more problematic. In fact, the quantity stored
is

w = a1/2H0h(a)a
dx

da
, (14)

which corresponds to peculiar, physical velocities in km s−1, divided by
a1/2. The factor of a1/2 is introduced for numerical convenience — velocities
are expected to scale with a1/2 by linear theory, so dividing by this factor
ensures that velocities do not change by several orders of magnitude during
the calculation which could introduce numerical errors. We can see this
correspondence between w and peculiar, physical velocities by observing
that

dr

dt
=

d(ax)

dt
(15)

= ȧx + a
dx

dt
(16)

= ȧx + aȧ
dx

da
(17)

= ȧx + a2H(a)
dx

da
(18)

= ȧx + a1/2w (19)

where the ȧx term corresponds to the Hubble flow.
So, we may now write the expressions to compute the kinetic and poten-

tial energy of our isolated halo in terms of the quantities w, x̃ and m̃, where
w and x̃ are as above and m̃ is in units of h−1

0
M�, such that the energies

are numerically in units of h−1

0
M� (100 km s−1)2 :

ẼP = −
1

a

∑

i

∑

j>i

Gm̃im̃j

|x̃i − x̃j |
; (20)

ẼK =
1

2

∑

i

m̃i

(
h(a)

h0

ax̃i +
a1/2w

H0

)2

. (21)

Note that here G = 4.301 × 10−13 M−1

� Mpc (100 km s−1)2.
These expressions will be useful in checking the validity of rescalings.

The virial theorem indicates that, for an isolated halo in equilibrium,

2ẼK

|ẼP |
≈ 1 , (22)

so that an analytic check on a rescaling of particle positions, velocities and
masses is that the ratio of the kinetic and potential energies of halos is
preserved. A numerical check on our results is that (22) holds before and
after rescaling.
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3 Simple Relabelling

Possibly the simplest useful rescaling to consider is one in which a z > 0
output with scale factor ai from some simulation is treated as a z = 0
output from a simulation in a different cosmology. We wish the scale factor,
a, to retain the conventional normalisation, i.e. a0 = 1. So we must have
a → 1 under rescaling. Since the value of h0 in the original simulation was
presumably chosen to agree with available data, we also require h0 → h0.
Similarly, the peak in the initial power spectrum of density fluctuations will
change unless x → x. Then inspection of, e.g., (9) suggests that we also
require

a
dx

da
→ a

dx

da
. (23)

This does not mean that the transformation is entirely trivial. If Ω 6= 1
then the matter density in a simulation is a function of a, Ω ≡ Ω(a). Since
the point of doing the rescaling is that we acquire a simulation in a different
cosmology, we preserve the value of Ω from the output we have rescaled; this
becomes the value of Ω0 in the new file. In other words, Ω0 → Ω(ai). For
a flat, ΛCDM cosmology, this means the rescaled simulation has a higher
Ω0 than the old simulation. Since we have preserved our length scales, this
implies that the particle mass must scale as

m →
Ω(ai)

Ω0

m , (24)

where here Ω0 refers to the z = 0 matter density before rescaling. Since (23)
implies that a−1/2w/h(a) is also preserved, we require

w → a
−1/2

i

h0

h(ai)
w = ai

(
Ω(ai)

Ω0

) 1

2

w , (25)

where we have used (5) to infer the equality on the right-hand side.
It remains to check that the kinetic and potential energies in an isolated

halo scale the same way under this scheme. Substituting the new quantities
into (20) and (21), and using (5) again, reveals that

EK → ai

(
Ω(ai)

Ω0

)2

EK and EP → ai

(
Ω(ai)

Ω0

)2

EP , (26)

so that we do indeed have consistency. Note that since h0 is preserved,
{m,x,E} scale in the same way as {m̃, x̃, Ẽ}. Therefore the above gives
us directly a prescription for how to alter the data in a GADGET output
file to achieve the desired rescaling, bearing in mind that the output at any
time contains the values of Ω0 and h0 — the values of Ω(a) and h(a) at the
final time — and not their instantaneous values at the output time. It is
also worth noting that it is conventional to label a simulation by the value
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of σ8 — the scale of mass fluctuations in spheres of 8 h−1 Mpc according to
linear theory — at the final time. However, this quantity also evolves with
time, σ8 ≡ σ8(a), becoming larger as structure forms in the simulation. So,
σ8(z = 0) → σ8(ai), where σ8(ai) can be calculated in linear theory.

4 More General Relabelling

Suppose that instead of relabelling the a = ai output as an a = 1 output we
decide to relabel the a = ai output as an a = af output, for some af 6= ai. A
little more care in notation is required, but the transformations generalise
as follows, with primes denoting quantities in the rescaled output:

a → a′ (27)

h0 → h′
0 = h0 (28)

h(a) → h′(a′) such that h′
0 = h0 (29)

x → x′ = x (30)

a
dx

da
→ a′

dx′

da′
= a

dx

da
(31)

Ω(a) → Ω′(a′) = Ω(a) (32)

Ω0 → Ω′
0 such that the above holds (33)

w → w′ =
h′(a′)

h(a)

(
a′

a

) 1

2

w (34)

=

(
Ω′

0

Ω0

) 1

2 a

a′
w using (5) (35)

m → m′ =
Ω′

0

Ω0

m . (36)

Then it is easily checked, again using (5), that the kinetic and potential
energies scale as

E → E′ =
a

a′

(
Ω′

0

Ω0

)2

E . (37)

5 Rescaling Ω

It has been observed that rescaling some parameters in cosmological simu-
lations results, at least to first order, in a relatively straightforward scaling
of some observables. For example, Zheng et al. (2002) state:

For fixed linear theory P (k), the effect of changing Ωm is sim-
ple: the halo mass scale M∗ shifts in proportion to Ωm, pairwise
velocities (at fixed M/M∗) are proportional to Ω0.6

m , and halo
clustering at fixed M/M∗ is unchanged.
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While this is an empirical effect rather than a consequence of an analytic
calculation, we hope that the scaling is good enough so that our catalogues
will still be sufficiently accurate when we rescale our simulations such that
σ8 remains constant but Ω0 changes.

For example, suppose we choose our simulation such that one output has
some fiducial values of Ω0 and σ8, once we take care of the relabelling de-
scribed above. Presumably these values have been chosen to agree at some
level with observations. Note, now, that Ω0 and σ8 may be constrained via
some function of both parameters, for example using the observed abun-
dance of clusters (Eke et al., 1996). It seems sensible, then, to generate
an ensemble of catalogues such that they are all consistent with a cluster
normalisation condition, where the curve of allowed values of (Ω0, σ8) passes
through the fiducial point. This curve is not the same as the curve traced
out by (Ω0, σ8) as the dark matter distribution in the simulation evolves.
Therefore to generate our ensemble of catalogues we need not only to relabel
the simulation outputs according to our analytic scheme above, but also to
rescale the outputs (preferably by a small amount) so that the members of
the ensemble lie on a convenient grid or on a suitable normalisation curve.

It is convenient to achieve this rescaling in practice by altering the par-
ticle mass to change Ω0, and compensating by changing particle velocities.
So,

Ω0 → Ω′
0 (38)

m → m′ =
Ω′

0

Ω0

m (39)

w → w′ =

(
Ω′

0

Ω0

)0.6

w (40)

Note that although we would require w to scale as (Ω′
0/Ω0)

0.5 to maintain
the virial relation, the scaling we use is close to the linear theory prediction,
and that in practice we only ever intend to rescale by small amounts. This
is helped by the fact that the cluster normalization curve and the curve de-
scribing the evolution of the simulation parameters look qualitatively similar
close to the fiducial point if we choose sensible parameter values.
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