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Introduction

Sky-averaged observations of the highly redshifted 21-cm
line will yield information on the first stars and galaxies, and
the first accreting black holes

z=80 40 20 10

DARE WINDOW

Modeling data for DARE

Construct parametrized models for the signal, foregrounds and instrument.
Generate synthetic data, then recover the parameters and their errors.
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Results

MCMC chains converge within a few hours on a standard desktop machine. We recover the
position of all 3 turning points with 3000 h of data (~3 year mission). 1000 h enough to get
turning points C and D. More time and better sensitivity mainly improves turning point B.
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