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Bayes’ theorem in suitable notation

Pr(Θ|D,H) =
Pr(D|Θ,H)Pr(Θ|H)

Pr(D|H)

I Θ is a vector of N parameters defined within some model
(or hypothesis) H.

I D is a vector storing the data.
I Pr(Θ|D,H) is the posterior probability distribution.
I Pr(D|Θ,H) is the likelihood, L(Θ).
I Pr(Θ|H) is the prior probability distribution, π(Θ).
I Pr(D|H) is known as the evidence, Z.
I Z =

∫
π(Θ)L(Θ)dNΘ



Monte Carlo methods: when to use them and why

I Monte Carlo methods can be used to map out the
posterior, which often can’t be computed analytically.

I With this probability distribution in hand we can compute a
number of useful quantities, such as mean values and
errors on arbitrary functions of the parameters.

I Monte Carlo methods can help overcome the ‘curse of
dimensionality’: to compute the likelihood on a grid with k
points on a side, we need kN computations of the
likelihood.

I Even small k or N can become problematic if the likelihood
is costly to compute.

I Unfortunately this is often the case, e.g. need to run
CMBFast to compute a power spectrum in CMB
experiments.

I Ideally we want to build up our picture of the posterior from
independent, random draws.



When and why to use MCMC specifically?

I Independent, random draws often can’t be achieved in
practice, or would be very inefficient (e.g. rejection
sampling) for the current problem.

I This often occurs with complicated distributions or large
numbers of dimensions.

I MCMC can be used to generate dependent draws which
are approximately from the desired distribution.

I MCMC is actually a big family of methods and at least one
will likely be suitable for your problem, but often the simple
(and popular) Metropolis-Hastings algorithm will be fine.

I The posterior then only needs to be evaluated up to some
normalizing constant.



General approach: a random walk through parameter
space

Figure: A two-dimensional slice
through parameter space.

I Build up a chain of
positions in parameter
space, Θ1, Θ2,. . .

I Markov chain: probability
density that the nth point is
at Θn depends only on
Θn−1 and not Θn−2, Θn−3,
. . .

I This transition probability,
T (Θi |Θi−1), is chosen so
that the points in the chain
are samples from the
approximate distribution
we wish to find.

I There are a number of
different algorithms which
can be used to build up the
chain.



Properties of the chain

I If the chain is:
I Irreducible (all possible states can be reached from any

point in the chain);
I Aperiodic (doesn’t get trapped in cycles)

then it converges to some invariant distribution.
I The aim is to make that equilibrium distribution, p(Θ), the

one we want to find.
I In equilibrium, detailed balance is satisfied:

p(Θn+1)T (Θn+1|Θn) = p(Θn)T (Θn|Θn+1)



Metropolis-Hastings Algorithm

I Choose an arbitrary proposal density, q(Θn,Θn+1), from
which are drawn suggestions for new positions in the chain.

I A proposal for the next position in the chain is accepted
with probability

α(Θn,Θn+1) = min
{

1,
Pr(Θn+1|D,H)q(Θn+1,Θn)

Pr(Θn|D,H)q(Θn,Θn+1)

}
I Otherwise, the chain stays where it is.
I This ensures that the equilibrium distribution is our

posterior probability distribution.
I If Θn is a sample from the the equilibrium distribution, then

detailed balance holds.
I A symmetric q is often used, simplifying the expression for
α.



Metropolis-Hastings Algorithm
I Detailed balance only holds when the initial point is already

a sample from the equilibrium distribution. The chain can
take a while to reach equilibrium, so early points are
discarded (the ‘burn-in’ phase).

I Successive links in the chain are correlated: to obtain
approximately independent samples, often only one in
every nthin samples is retained (‘thinning’ the chain).

I A simple Metropolis-Hastings algorithm (Metropolis et al.
1953; Hastings 1970) can be run in an embarrassingly
parallel way, since several chains can be run at the same
time and they don’t have to communicate with each other.

I There are a variety of other samplers available: Gibbs
(need to be able to compute conditional PDFs), slice
sampling, Hamiltonian Monte Carlo (more complicated),
and many more, but Metropolis-Hastings is generally
applicable and usually OK.



Choosing a proposal distribution

I One diagnostic for how
well the chain is exploring
parameter space is the
acceptance ratio, a, the
fraction of proposed moves
which are accepted.

I This should be of order
a few tens of percent.

I Too low: have to perform
many likelihood
computations for each
new link.

I Too high: adjacent links
will be highly correlated;
more thinning needed;
may find it hard to move
to other peaks (tough in
general for vanilla
MCMC).

Figure: Ideally, the proposal
distribution should be matched in
shape and size to the posterior
distribution.

I The main factor influencing
a is the choice of q.



Choosing a proposal distribution
I Common to choose a multidimensional Gaussian centred

on the current Θ as the proposal distribution, so that
setting q just involves setting the covariance matrix of this
Gaussian.

I For problems in small numbers of dimensions, it may be
good enough to set the width of the Gaussian in different
directions by hand, either heuristically or using some
knowledge about the likely shape of the posterior.

I Otherwise, it’s sensible to try to find the covariance matrix
of q more automatically, e.g. from the covariance of
posterior samples from an early part of the run. This also
means that a general move is not along parameter axes
(otherwise, normally just change some random subset of
the parameters in each step).

I Cannot update q too often as the algorithm is running, as
this breaks the ‘Markov’ property of the Markov chain.



Example: extracting a 21-cm signal from the Dark
Ages

I A number of experiments are attempting to detect highly
redshifted 21-cm radiation from the epoch of reionization
and the cosmic dark ages.

I This will allow the effect of the first stars, galaxies and
black holes on the surrounding IGM to be studied.

I Need to look at low radio frequencies, . 200 MHz.
I The Dark Ages Radio Explorer (DARE) looks at

40–120 MHz (z ∼ 11–34) from lunar orbit.
I Many other sources of radiation are present at these

frequencies.
I These large foregrounds must be modelled and removed

accurately; this also puts stringent requirements on the
calibration of the instrument.



A model for the sky-averaged 21-cm signal

Figure: Reference model for the
sky-averaged 21-cm signal

I The sky-averaged 21-cm
signal depends on the
Lyman-α and X-ray
radiation fields.

I Ly-α couples 21-cm
‘spin temperature’ to the
gas temperature.

I X-rays heat the gas.
I Energetic photons ionize

hydrogen
I The spectrum has a few

key ‘turning points’
(A,B,C,D,E): positions of
these are used to
parametrize the different
possible histories.



Foregrounds for sky-averaged 21-cm experiments

Figure: Foregrounds and noise for
a DARE-like experiment,
compared to the expected signal

I Several foregrounds
dominate the signal and
must be carefully
modelled.

I Synchrotron, free-free
etc. from our Galaxy.

I A sea of unresolved
extragalactic sources.

I The Sun and the thermal
emission of the Moon.

I Reflections of other
foregrounds from the
Moon.

I Some other foregrounds
are neglected here:
Jupiter, plasma from
impacts of dust on the
antenna, . . .



A synthetic dataset from the Dark Ages Radio Explorer

Figure: Eight noisy spectra, each
assuming 375 hours of integration

I The spectra turn over at
low frequencies: not
physical, but owing to the
instrument response.

I This must also be
modelled! Tiny errors in
assumed instrument
response drown the signal
when convolved with huge
foregrounds.

I To achieve required
accuracy, must fit the
instrument model along
with the signal and the
foregrounds from the data.



Building the likelihood function for DARE

I Likelihood function depends on a large number of
parameters, and must be computed numerically.

I We want good estimates of the science parameters and
the errors on them, and to study correlations between
parameters.

I Ideally suited to MCMC!
I For computational reasons, in fact we always work with

logL, logπ, etc. Ranging over the prior space, the
un-logged posterior probability varies by many orders of
magnitude.



Building the likelihood function for DARE

I We assume that DARE collects spectra between 40 and
120 MHz in eight independent sky regions (with different
foregrounds, but the same 21-cm signal and instrument).

I Signal:
I Six parameters, {ν{B,C,D},T{B,C,D}}, the position in

frequency and temperature of the three turning points in the
DARE band.

I Interpolate between these with a cubic spline, giving
Tsky(ν).

I Foregrounds:
I Diffuse foregrounds: log T is a third-order polynomial in

log ν in each sky region.

log T i
FG = log T i

0+ai
1 log(ν/ν0)+ai

2[log(ν/ν0)]2+ai
3[log(ν/ν0)]3 ,

i = 1,2, . . . ,8.



Building the likelihood function for DARE

I Foregrounds, contd.:
I Sun: different normalization but same shape in each sky

region:

log T i
Sun = log T i,Sun

0 +aSun
1 log(ν/ν0)+aSun

2 [log(ν/ν0)]2+aSun
3 [log(ν/ν0)]3 ,

i = 1,2, . . . ,8.
I Moon: TMoon,eff(ν) = const., around 230 K attenuated by the

backlobe of the DARE beam to an effective ∼ 23 K.
I Total sky spectrum

T i
sky(ν) =

[
Tsig(ν) + T i

FG(ν)
]

[1 + rMoon] + TMoon,eff ,

i = 1,2, . . . . ,8, where r is the reflectivity of the Moon.



Effect of the instrument on the spectrum

I Expected antenna temperature

Tant(ν) =
[
1− |Γ(ν)|2

]
Tsky(ν)

+
[
1 + 2ε|Γ(ν)| cos(β(ν)) + |Γ(ν)|2

]
Trcv .

I Γ(ν) is the complex reflection coefficient, having amplitude
|Γ(ν)| and phase β(ν).

I |Γ(ν)| and β(ν) are parametrized using the first ten
coefficients of their discrete cosine transform.
Higher-frequency components are assumed not present as
the response has been assumed to be smooth.

I Trcv is the receiver temperature, assumed constant.
I ε is a correlation coefficient.



Modelled DARE instrument response, and the
parameters of the model

Figure: Amplitude and phase of
the reflection coefficient as a
function of frequency

Table: Summary of the parameter
space

Parameter group No. of params.
21-cm signal 3× 2 = 6
Diffuse foregrounds 4× 8 = 32
Sun 8 + 3 = 11
Moon 2
Instrument 22
Total 73



Putting it all together: the DARE likelihood function

I The thermal noise on the spectrum is Gaussian, and its
RMS is predicted with the radiometer equation:

σ(ν) =
Tant(ν)√

2Bt

I B is the width of a frequency channel (effective width, if
some parts are discarded because of radio recombination
lines, etc.), typically ∼ 1 MHz.

I t is the integration time (typically a few hundred hours for
these global signal experiments).

I Factor of
√

2 comes because we assume a crossed pair of
dipoles.



Putting it all together: the DARE likelihood function

I Probability density of measuring the temperature T i
meas(νj)

if the noise-free antenna temperature is T i
ant(νj |Θ) is

pij =
1√

2πσ2
i (νj |Θ)

e−[T
i
meas(νj )−T i

ant(νj |Θ)]2/2σ2
i (νj |Θ) .

I Assuming each sky area and frequency channel is
independent, then

L(T meas|Θ) =

nareas∏
i=1

nfreq∏
j=1

pij .

I T meas is the noisy spectrum generated using the ‘true’
parameters (our synthetic, ‘measured’ dataset), and
T i

ant(νj |Θ) can be computed as before assuming any Θ.



Results: constraints on the position of the turning
points and the shape of the signal

Figure: Marginalizing can give
constraints on individual
parameters or subsets of
parameters.

Figure: Rigorous constraints can
also be found on arbitrary
functions of the parameters; don’t
just have to do ‘error propagation’.



Scaled covariance matrix of the parameters



Choosing initial values and burn-in

I One strategy for deciding where to start the chains is just
to pick random points within the prior volume. This can be
problematic as they might take a while to find the region of
high likelihood.

I A standard minimization routine (see earlier in this course)
can usually find the high-likelihood region more efficiently,
then you can start the chains off from there. This might fail
for multimodal functions.

I To work out how many ‘burn-in’ points to discard (often ∼ a
few thousand), easiest is just to look at the chains: it’s
usually good strategy to plot things as you go along
anyway, just to make sure everything’s going OK.

I Might need to discard fewer points if the chains start out in
the high-density region.



Deciding how many points is enough

I If the chain is mixing well, then you might not need that
many samples of the equilibrium distribution (i.e. no more
than a few hundred, if N is small) to compute the quantities
you want with reasonable accuracy. So how do you know if
the chain is well mixed?

I Visual inspection of diagnostic plots:
I Iteration number vs. parameter value: shouldn’t get stuck in

one area for a while and then jump around.
I Running mean of a parameter: should be converging nicely

to some value.
I Autocorrelation of the parameter value along the chain: this

should not remain high at large lag.
I This might also help you choose the amount of thinning,

which otherwise is usually chosen heuristically (keeping
somewhere between one draw in every few draws, and one
draw in every 100).



Deciding how many points is enough: a more
quantitative method

I A variety of diagnostics are available to check if your
chains are converged, but none is perfect.

I The Gelman-Rubin test (Gelman & Rubin 1992) is popular
and straightforward, but requires you to run multiple chains
(you’ll usually want to be doing this anyway).

I The idea is to compare the variance within each chain to
the variance between chains (after discarding the first half
of the chain). The between-chain variance shouldn’t be too
large if all the chains are well converged.



The Gelman-Rubin test in more detail

I Start with m chains of length 2n, discard the first n points
from each, and then for each parameter:

I Compute B/n, the variance between the m sequence
means;

I Compute W , the average of the m within-chain sample
variances;

I Estimate the target variance as σ̂2 = n−1
n W + B

n ;
I Find the ‘potential scale reduction factor’ R̂ =

√
σ̂2/W .

I We need R̂ . 1.1 for each parameter (preferably less).
I Finally, this lets us combine all the chains together to

estimate the posterior.



Complicated or pathological likelihoods

I It’s possible to come across problems where it seems very
difficult to get MCMC to work efficiently.

I Multimodal posteriors are especially awkward.
I A method such as simulated annealing allows the chain to

take bigger steps early on, and hopefully find all the peaks.
I There are other families of related methods which might

work better, such as ‘nested sampling’
I Likelihood contours might be narrow and strongly curved:

unless you can reformulate the problem, the chains might
explore them very slowly. Techniques like nested sampling
can work here too.



Model selection and Bayesian evidence

I Sometimes we may want to compare how different models,
with different parametrizations, perform in fitting some data
set.

I Models with more parameters in general have more
freedom, so one can penalize the more flexible models to
reflect this (e.g. the Bayesian Information Criterion, BIC).

I A more rigorous way to compare models is to use the
evidence, Z, but unfortunately MCMC only computes the
posterior up to an arbitrary normalization.

I It’s possible to compute the evidence using results of
MCMC, but in general this is very expensive (much more
so than running MCMC in the first place).

I If this is the aim from the start, it’s worth considering
alternative methods.



Further Reading

W. H. Press, S. A. Teukolsky, W. T. Vetterling and
B. P. Flannery
Numerical Recipes
Cambridge University Press, 2007
The usual practical introduction to the topic can be found in
Chapter 15.

A. Lewis and S. Bridle
Cosmological parameters from CMB and other data: A
Monte Carlo approach
Phys. Rev. D, 66, 103511 (2002).
A nice astronomical example of the use of MCMC, with
some good references, and useful tips for writing your own
MCMC code.
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